Whole genome analysis for QTL/association enrichment
Running...
Version: Enrich S: beta v0.8
Data:
Number of feed conversion traits:
2
Number of QTL / associations found:
479
Number of chromosomes where QTL / associations are found:
19
Chi-squared (χ2) test: are feed conversion traits over-represented on some chromosomes?
Chromosomes
Total χ2
df
p-values
FDR *
Size of χ2
Chromosome X
3.05988
18
0.9999677
9.999677e-01
Chromosome 1
31.06824
18
0.02826839
1.074199e-01
Chromosome 2
5.34798
18
0.9982057
9.999677e-01
Chromosome 3
23.49830
18
0.1721607
4.088817e-01
Chromosome 4
107.37304
18
9.685828e-15
9.201537e-14
Chromosome 5
221.07658
18
5.871041e-37
1.115498e-35
Chromosome 6
0.25404
18
0.998329325823115
9.999677e-01
Chromosome 7
5.34798
18
0.9982057
9.999677e-01
Chromosome 8
9.97012
18
0.9328772
9.999677e-01
Chromosome 9
3.65696
18
0.9998767
9.999677e-01
Chromosome 10
23.49830
18
0.1721607
4.088817e-01
Chromosome 11
23.49830
18
0.1721607
4.088817e-01
Chromosome 12
11.82816
18
0.8559812
9.999677e-01
Chromosome 13
32.40436
18
0.01968258
1.074199e-01
Chromosome 14
0.61730
18
0.998329325823115
9.999677e-01
Chromosome 15
31.06824
18
0.02826839
1.074199e-01
Chromosome 16
1.13922
18
0.998329325823115
9.999677e-01
Chromosome 17
9.97012
18
0.9328772
9.999677e-01
Chromosome 18
18.35424
18
0.4325559
9.131736e-01
Chi-squared (χ2) test: Which of the 2 feed conversion traits are over-represented in the QTLdb
Traits
Total χ2
df
p-values
FDR *
Size of χ2
Feed conversion ratio
9.1566
1
0.002478226
2.478226e-03
Feed efficiency
90.52544
1
1.826138e-21
3.652276e-21
Correlations found between some of these traits for your reference
No correlation data found on these traits
Overall Test
Data
Chi'Square Test
Fisher's Exact Test
Number of chrom.:
19
χ2
=
563.031360
Number of traits:
2
df
=
18
Number of QTLs:
479
p-value
=
5.524183e-108
FOOT NOTE: * : FDR is short for "false
discovery rate", representing the expected proportion of type I errors. A type I
error is where you incorrectly reject the null hypothesis, i.e. you get a false
positive. It's statistical definition is FDR = E(V/R | R > 0) P(R > 0), where
V = Number of Type I errors (false positives); R = Number of rejected hypotheses.
Benjamini–Hochberg procedure is a practical way to estimate FDR.