ASReml
 User Guide

Release 2.0

NSW Department of Primary Industries, Orange, Australia
B J Gogel
Department of Primary Industries, Brisbane, Australia
B R Cullis
NSW Department of Primary Industries, Wagga Wagga, Australia
R Thompson
Rothamsted Research, Harpenden, United Kingdom

ASReml User Guide Release 2.0

ASReml is a statistical package that fits linear mixed models using Residual Maximum Likelihood (REML). It is a joint venture between the Biometrics Program of NSW Department of Primary Industries and the Biomathematics Unit of Rothamsted Research. Statisticians in Britain and Australia have collaborated in its development.

Main authors:

A. R. Gilmour, B. J. Gogel, B. R. Cullis and R. Thompson

Other contributors:

D. Butler, M. Cherry, D. Collins, G. Dutkowski, S. A. Harding, K. Haskard, A. Kelly, S. G. Nielsen, A. Smith, A. P. Verbyla, S. J. Welham and I. M. S. White.

Author email addresses

Arthur.Gilmour@dpi.nsw.gov.au
Beverley.Gogel@dpi.qld.gov.au
Brian.Cullis@dpi.nsw.gov.au
Robin.Thompson@bbsrc.ac.uk

Copyright Notice

Copyright © 2006, NSW Department of Primary Industries. All rights reserved.

Except as permitted under the Copyright Act 1968 (Commonwealth of Australia), no part of the publication may be reproduced by any process, electronic or otherwise, without specific written permission of the copyright owner. Neither may information be stored electronically in any form whatever without such permission.

Published by:

VSN International Ltd, 5 The Waterhouse, Waterhouse Street, Hemel Hempstead, HP1 1ES, UK
E-mail: info@asreml.co.uk
Website: http://www.vsni.co.uk/

The correct bibliographical reference for this document is:
Gilmour, A.R., Gogel, B.J., Cullis, B.R., and Thompson, R. 2006 ASReml User Guide Release 2.0 VSN International Ltd, Hemel Hempstead, HP1 1ES, UK

ISBN 1-904375-23-5

Preface

ASReml is a statistical package that fits linear mixed models using Residual Maximum Likelihood (REML). It has been under development since 1993 and is a joint venture between the Biometrics Program of NSW Department of Primary Industries and the Biomathematics and Bioinformatics Division (previously the Statistics Department) of Rothamsted Research. This guide relates to Release 2 of ASReml, completed in December 2005. Changes in this version are indicated by the word New in the margin. A separate document, ASReml Update. What's new in Release 2.00, is available to highlight the changes from Release 1.00.

Linear mixed effects models provide a rich and flexible tool for the analysis of many data sets commonly arising in the agricultural, biological, medical and environmental sciences. Typical applications include the analysis of (un)balanced longitudinal data, repeated measures analysis, the analysis of (un)balanced designed experiments, the analysis of multi-environment trials, the analysis of both univariate and multivariate animal breeding and genetics data and the analysis of regular or irregular spatial data.

ASReml provides a stable platform for delivering well established procedures while also delivering current research in the application of linear mixed models. The strength of ASReml is the use of the Average Information (AI) algorithm and sparse matrix methods for fitting the linear mixed model. This enables it to analyse large and complex data sets quite efficiently.

One of the strengths of ASReml is the wide range of variance models for the random effects in the linear mixed model that are available. There is a potential cost for this wide choice. Users should be aware of the dangers of either overfitting or attempting to fit inappropriate variance models to small or highly unbalanced data sets. We stress the importance of using data-driven diagnostics and encourage the user to read the examples chapter, in which we have attempted to not only present the syntax of ASReml in the context of real analyses but also to indicate some of the modelling approaches we have found useful.

ASReml is one of several user interfaces to the underlying computational engine. Genstat in its REML directive and the asreml class of S language functions (Butler et al. 2007) available for S-Plus (ASReml-S) and R (ASReml-R) use the same engine. These are available from VSN (http://www.vsni.co.uk) and have good data manipulation and graphical facilities.

The focus in developing ASReml has been on the core engine and it is freely acknowledged that its user interface is not to the level of these other packages. Nevertheless, as the developers interface, it is functional, it gives access to everything that the core can do and is especially suited to batch processing and running of large models without the overheads of other systems. Feedback from users is welcome and attempts will be made to rectify identified problems in ASReml.

The guide has 15 chapters. Chapter 1 introduces ASReml and describes the conventions used in this guide. Chapter 2 outlines some basic theory while Chapter 3 presents an overview of the syntax of ASReml through a simple example. Data file preparation is described in Chapter 4 and Chapter 5 describes how to input data into ASReml. Chapters 6 and 7 are key chapters which present the syntax for specifying the linear model and the variance models for the random effects in the linear mixed model. Chapters 8 and 9 describe special commands for multivariate and genetic analyses respectively. Chapter 10 deals with prediction of linear functions of fixed and random effects in the linear mixed model and Chapter 11 presents the syntax for forming functions of variance components. Chapter 12 demonstrates running an ASReml job features available and Chapter 13 gives a detailed explanation of the output files. Chapter 14 gives an overview of the error messages generated in ASReml and some guidance as to their probable cause. The guide concludes with the most extensive chapter which presents the examples.

Briefly, the improvements in Release 2.00 include more robust variance parameter updating so that 'Convergence Failure' is less likely, extensions to the syntax, inclusion of the Matérn correlation model, ability to plot predicted values, improvements to the Analysis of Variance procedures, improvements to the handling of pedigrees and some increases in computational speed.

The data sets and ASReml input files used in this guide are available from http://www.vsni.co.uk/products/asreml as well as in the examples directory of the distribution CD-ROM. They remain the property of the authors or of the original source but may be freely distributed provided the source is acknowledged. The authors would appreciate feedback and suggestions for improvements to the program and this guide.

Proceeds from the licensing of ASReml are used to support continued development to implement new developments in the application of linear mixed models. The developmental version is available to supported licensees via a website upon request to VSN. Most users will not need to access the developmental version unless they are actively involved in testing a new development.

Acknowledgements

We gratefully acknowledge the Grains Research and Development Corporation of Australia for their financial support for our research since 1988. Brian Cullis and Arthur Gilmour wish to thank the NSW Department of Primary Industries,for providing a stimulating and exciting environment for applied biometrical research and consulting. Rothamsted Research receives grant-aided support from the Biotechnology and Biological Sciences Research Council of the United Kingdom.

We sincerely thank Ari Verbyla, Sue Welham, Dave Butler and Alison Smith, the other members of the ASReml 'team'. Ari contributed the cubic smoothing splines technology, information for the Marker map imputation, on-going testing of the software and numerous helpful discussions and insight. Sue Welham has overseen the incorporation of the core into Genstat and contributed to the predict functionality. Dave Butler has developed the asreml class of functions for S-plus and R. Alison contributed to the development of many of the approaches for the analysis of multi-section trials. We also thank Ian White for his contribution to the spline methodology, and Simon Harding for the licensing and installation software and for his development of the ASReml-W environment for running ASReml. The Matérn function material was developed with Kathy Haskard, a PhD student with Brian Cullis, and the denominator degrees of freedom material was developed with Sharon Nielsen, a Masters student with Brian Cullis. Damian Collins contributed the PREDICT !PLOT material. Greg Dutkowski has contributed to the extended pedigree options. The asremload.dll functionality is provided under license to VSN. Alison Kelly has helped with the review of the XFA models. Finally, we especially thank our close associates who continually test the enhancements.

Arthur Gilmour acknowledges the grace of God through Jesus Christ who enables this research to proceed. Be exalted O God, above the heavens: and Thy glory above all the earth. Psalm 108:5.

Contents

Preface i
List of Tables xvii
List of Figures xix
1 Introduction 1
1.1 What ASReml can do 2
1.2 Installation 2
1.3 User Interface 3
ASReml-W 3
ConTEXT 3
1.4 How to use this guide 4
1.5 Help and discussion list 4
1.6 Typographic conventions 5
2 Some theory 6
2.1 The linear mixed model 7
Introduction 7
Direct product structures 7
Variance structures for the errors: R structures 9
Variance structures for the random effects: G structures 10
2.2 Estimation 11
Estimation of the variance parameters 11
Estimation/prediction of the fixed and random effects 14
2.3 What are BLUPs? 15
2.4 Combining variance models 16
2.5 Inference: Random effects 17
Tests of hypotheses: variance parameters 17
Diagnostics 18
2.6 Inference: Fixed effects 19
Introduction 19
Incremental and Conditional Wald Statistics 20
Kenward and Roger Adjustments 24
Approximate stratum variances 24
3 A guided tour 26
3.1 Introduction 27
3.2 Nebraska Intrastate Nursery (NIN) field experiment 27
3.3 The ASReml data file 28
3.4 The ASReml command file 30
The title line 31
Reading the data 31
The data file line 32
Tabulation 32
Specifying the terms in the mixed model 32
Prediction 33
Variance structures 33
3.5 Running the job 33
Forming a job template 34
3.6 Description of output files 35
The .asr file 35
The .sln file 37
The . yht file 38
3.7 Tabulation, predicted values and functions of the variance components 38
4 Data file preparation 41
4.1 Introduction 42
4.2 The data file 42
Free format data files 42
Fixed format data files 44
Preparing data files in Excel 44
Binary format data files 44
5 Command file: Reading the data 45
5.1 Introduction 46
5.2 Important rules 46
5.3 Title line 47
5.4 Specifying and reading the data 47
Data field definition syntax 48
Storage of alphabetic factor labels 49
Reordering the factor levels 50
Skipping input fields 50
5.5 Transforming the data 50
Transformation syntax 52
QTL marker transformations 56
Other rules and examples 57
Special note on covariates 58
5.6 Datafile line 59
Data line syntax 59
5.7 Data file qualifiers 60
Combining rows from separate files 63
5.8 Job control qualifiers 63
6 Command file: Specifying the terms in the mixed model 82
6.1 Introduction 83
6.2 Specifying model formulae in ASReml 83
General rules 83
Examples 88
6.3 Fixed terms in the model 88
Primary fixed terms 88
Sparse fixed terms 89
6.4 Random terms in the model 89
6.5 Interactions and conditional factors 90
Interactions 90
Conditional factors 91
6.6 Alphabetic list of model functions 91
6.7 Weights 96
6.8 Generalized Linear Models 96
6.9 Generalized Linear Mixed Models 99
6.10 Missing values 101
Missing values in the response 101
Missing values in the explanatory variables 101
6.11 Some technical details about model fitting in ASReml 101
Sparse versus dense 101
Ordering of terms in ASReml 102
Aliassing and singularities 102
Examples of aliassing 103
6.12 Analysis of variance table 104
7 Command file: Specifying variance structures 105
7.1 Introduction 106
Non singular variance matrices 106
7.2 Variance model specification in ASReml 107
7.3 A sequence of structures for the NIN data 107
7.4 Variance structures 115
General syntax 115
Variance header line 117
R structure definition 118
G structure header and definition lines 120
7.5 Variance model description 120
Forming variance models from correlation models 126
Notes on the variance models 127
7.6 Variance structure qualifiers 133
7.7 Rules for combining variance models 134
7.8 G structures involving more than one random term 135
7.9 Constraining variance parameters 137
Parameter equality within and between variance structures 137
Constraints between and within variance models 138
7.10 Model building using the !CONTINUE qualifier 139
8 Command file: Multivariate analysis 141
8.1 Introduction 142
Repeated measures on rats 142
Wether trial data 142
8.2 Model specification 143
8.3 Variance structures 144
Specifying multivariate variance structures in ASReml 144
8.4 The output for a multivariate analysis 145
9 Command file: Genetic analysis 148
9.1 Introduction 149
9.2 The command file 149
9.3 The pedigree file 150
9.4 Reading in the pedigree file 151
9.5 Genetic groups 152
9.6 Reading a user defined inverse relationship matrix 154
The example continued 155
10 Tabulation of the data and prediction from the model 156
10.1 Introduction 157
10.2 Tabulation 157
10.3 Prediction 158
Underlying principles 158
Predict syntax 160
Examples 168
11 Functions of variance components 170
11.1 Introduction 171
11.2 Syntax 171
Linear combinations of components 171
Heritability 172
Correlation 173
A more detailed example 174
12 Command file: Running the job 176
12.1 Introduction 177
12.2 The command line 177
Normal run 177
Processing a .pin file 178
Forming a job template from data file 178
12.3 Command line options 179
Prompt for arguments (A) 181
Output control (B, J) 181
Debug command line options (D, E) 181
Graphics command line options (G, H, I, N, Q) 181
Job control command line options (C, F, O, R) 183
Workspace command line options (S, W) 183
Examples 184
12.4 Advanced processing arguments 185
Standard use of arguments 185
Prompting for input 186
Paths and Loops 186
13 Description of output files 188
13.1 Introduction 189
13.2 An example 190
13.3 Key output files 190
The .asr file 190
The .sln file 193
The . yht file 195
13.4 Other ASReml output files 196
The .aov file 196
The .dpr file 199
The .pvc file 199
The .pvs file 199
The .res file 200
The .rsv file 205
The .tab file 207
The .vrb file 207
The .vvp file 208
13.5 ASReml output objects and where to find them 209
14 Error messages 212
14.1 Introduction 213
14.2 Common problems 214
14.3 Things to check in the .asr file 215
14.4 An example 217
14.5 Information, Warning and Error messages 228
15 Examples 241
15.1 Introduction 242
15.2 Split plot design - Oats 242
15.3 Unbalanced nested design - Rats 246
15.4 Source of variability in unbalanced data - Volts 250
15.5 Balanced repeated measures - Height 253
15.6 Spatial analysis of a field experiment - Barley 261
15.7 Unreplicated early generation variety trial - Wheat 267
15.8 Paired Case-Control study - Rice 272
Standard analysis 273
A multivariate approach 278
Interpretation of results 282
15.9 Balanced longitudinal data - Random coefficients and cubic smoothing splines - Oranges 284
15.10Multivariate animal genetics data - Sheep 292
Half-sib analysis 293
Animal model 302
Bibliography 305
Index 311

List of Tables

2.1 Combination of models for G and R structures 16
3.1 Trial layout and allocation of varieties to plots in the NIN field trial 29
5.1 List of transformation qualifiers and their actions with examples 53
5.2 Qualifiers relating to data input and output 60
5.3 List of commonly used job control qualifiers 64
5.4 List of occasionally used job control qualifiers 67
5.5 List of rarely used job control qualifiers 72
5.6 List of very rarely used job control qualifiers 79
6.1 Summary of reserved words, operators and functions 85
6.2 Alphabetic list of model functions and descriptions 91
6.3 Link qualifiers and functions 97
6.4 GLM qualifiers 97
6.5 Examples of aliassing in ASReml 103
7.1 Sequence of variance structures for the NIN field trial data 114
7.2 Schematic outline of variance model specification in ASReml 116
7.3 Details of the variance models available in ASReml 121
7.4 List of R and G structure qualifiers 133
7.5 Examples of constraining variance parameters in ASReml 137
9.1 List of pedigree file qualifiers 152
10.1 List of prediction qualifiers 163
10.2 List of predict plot options 165
12.1 Command line options 180
12.2 The use of arguments in ASReml 185
12.3 High level qualifiers 186
13.1 Summary of ASReml output files 189
13.2 ASReml output objects and where to find them 209
14.1 Some information messages and comments 228
14.2 List of warning messages and likely meaning(s) 229
14.3 Alphabetical list of error messages and probable cause(s)/remedies 231
15.1 A split-plot field trial of oat varieties and nitrogen application 242
15.2 Rat data: AOV decomposition 247
15.3 REML log-likelihood ratio for the variance components in the volt- age data 252
15.4 Summary of variance models fitted to the plant data 254
15.5 Summary of Wald test for fixed effects for variance models fitted to the plant data 260
15.6 Field layout of Slate Hall Farm experiment 262
15.7 Summary of models for the Slate Hall data 267
15.8 Estimated variance components from univariate analyses of blood- worm data. (a) Model with homogeneous variance for all terms and (b) Model with heterogeneous variance for interactions involving tmt 276
15.9 Equivalence of random effects in bivariate and univariate analyses 279
15.10 Estimated variance parameters from bivariate analysis of bloodworm data 280
15.11 Orange data: AOV decomposition 288
15.12 Sequence of models fitted to the Orange data 289
15.13 REML estimates of a subset of the variance parameters for each trait for the genetic example, expressed as a ratio to their asymptotic s.e 294
15.14 Wald tests of the fixed effects for each trait for the genetic example 294
15.15 Variance models fitted for each part of the ASReml job in the analysis of the genetic example 297

List of Figures

5.1 Variogram in 4 sectors for Cashmore data 79
13.1 Residual versus Fitted values 195
13.2 Variogram of residuals 204
13.3 Plot of residuals in field plan order 205
13.4 Plot of the marginal means of the residuals 206
13.5 Histogram of residuals 206
15.1 Residual plot for the rat data 249
15.2 Residual plot for the voltage data 252
15.3 Trellis plot of the height for each of 14 plants 253
15.4 Residual plots for the EXP variance model for the plant data 256
15.5 Sample variogram of the residuals from the AR1 \times AR1 model for the Slate Hall data 264
15.6 Sample variogram of the residuals from the AR1 \times AR1 model for the Tullibigeal data 270
15.7 Sample variogram of the residuals from the AR1 \times AR1 + pol (column, -1) model for the Tullibigeal data 270
15.8 Rice bloodworm data: Plot of square root of root weight for treated versus control 274
15.9 BLUPs for treated for each variety plotted against BLUPs for control 281
15.10 Estimated deviations from regression of treated on control for each variety plotted against estimate for control 282
15.11 Estimated difference between control and treated for each variety plotted against estimate for control 283
15.12 Trellis plot of trunk circumference for each tree 285
15.13 Fitted cubic smoothing spline for tree 1 287
15.14 Plot of fitted cubic smoothing spline for model 1 290
15.15 Trellis plot of trunk circumference for each tree at sample dates (adjusted for season effects), with fitted profiles across time and confidence intervals 291
15.16 Plot of the residuals from the nonlinear model of Pinheiro and Bates 292

Introduction

What ASReml can do

 InstallationUser Interface
How to use the guide
Help and discussion list
Typographic conventions

1.1 What ASReml can do

ASReml (pronounced $A S$ Rem el) is used to fit linear mixed models to quite large data sets with complex variance models. It extends the range of variance models available for the analysis of experimental data. ASReml has application in the analysis of

- (un)balanced longitudinal data,
- repeated measures data (multivariate analysis of variance and spline type models),
- (un)balanced designed experiments,
- multi-environment trials and meta analysis,
- univariate and multivariate animal breeding and genetics data (involving a relationship matrix for correlated effects),
- regular or irregular spatial data.

The engine of ASReml forms the basis of the REML procedure in GENSTAT and the asreml class of S language functions (Butler et al. 2007) available for S-Plus (ASReml-S) and R (ASReml-R) ${ }^{1}$. Both of these have good data manipulation and graphical facilities. and will be adequate for many analyses, some large problems will need to use ASReml. The ASReml user interface is terse. Most effort has been directed towards efficiency of the engine. It normally operates in a batch mode.

Problem size depends on the sparsity of the mixed model equations and the size of your computer. However, models with 500,000 effects have been fitted successfully. The computational efficiency of ASReml arises from using the Average Information REML procedure (giving quadratic convergence) and sparse matrix operations. ASReml has been operational since March 1996 and is updated periodically.

1.2 Installation

Installation instructions are distributed with the program. If you require help with installation, please email support@asreml.co.uk.

[^0]
1.3 User Interface

ASReml is essentially a batch program with some optional interactive features. The typical sequence of operations when using ASReml is

- Prepare the data (typically using a spreadsheet or data base program)
- Export that data as an ASCII file (for example export it as a .csv (comma separated values) file from Excel)
- Prepare a job file with filename extension .as
- Run the job file with ASReml
- Review the various output files
- revise the job and re run it, or
- extract pertinant results for your report.

So you need an ASCII editor to prepare input files and review and print output files. We directly provide two options.

ASReml-W

ASReml-W is a graphical tool distributed by VSN (http://www.vsni.co.uk) allowing the user to edit and run ASReml programs, and then view the output. It is available on the following platforms:

- Windows 32-bit,
- Windows 64 -bit,
- Linux 32-bit,
- Linux 64-bit, and
- Sun/Solaris 32-bit

ASReml-W has a built-in help system explaining its use.

ConTEXT

ConTEXT is a third-party freeware text editor, with programming extensions which make it a suitable environment for running ASReml under Windows. The ConTEXT directory on the CD-ROM includes installation files and instructions for configuring it for use in ASReml . Full details of ConTEXT are available from http://www. context.cx/.

1.4 How to use this guide

The guide consists of 15 chapters. Chapter 1 introduces ASReml and describes Theory the conventions used in the guide. Chapter 2 outlines some basic theory which you may need to come back to.

Getting started New ASReml users are advised to read Chapter 3 before attempting to code their first job. It presents an overview of basic ASReml coding demonstrated on a real Examples data example. Chapter 15 presents a range of examples to assist users further. When coding you first job, look for an example to use as a template.

Data file Data file preparation is described in Chapter 4, while Chapter 5 describes how to input data into ASReml. Chapters 6 and 7 are key chapters which present the syntax for specifying the linear model and the variance models for the random

Linear model
Variance model effects in the linear mixed model. Variance modelling is a complex aspect of analysis. We introduce variance modelling in ASReml by example in Chapter 7.

Chapters 8 and 9 describe special commands for multivariate and genetic analyses

1.5 Help and discussion list

The ASReml help accessable through ASReml-W can also be accessed directly (ASReml.chm).

Supported users of ASReml may email support@asreml.co.uk for assistance. When requesting help for a job that is not working as you expect, please send the input command file, the data file and the corresponding primary output file along with a description of the problem.

New
There is an ASReml discussion list. If you would like to join, change your email ad- dress or be removed from the list, email arthur.gilmour@dpi.nsw.gov.au with your request. The address for messages to the list is ASReml-L@dpi.nsw.gov.au.

There is a User Area on the website (http://www.VSNi.co.uk select ASReml and then User Area) which contains contributed material that may be of assistance. It includes an ASReml tutorial in the form of sixteen sets of slides with audio (.mp3) discussion. The sessions last about 20 minutes each.

1.6 Typographic conventions

A hands on approach is the best way to develop a working understanding of a new computing package. We therefore begin by presenting a guided tour of ASReml using a sample data set for demonstration (see Chapter 3). Throughout the guide new concepts are demonstrated by example wherever possible.

In this guide you will find framed sample boxes to the right of the page as shown here. These contain ASReml command file (sample) code. Note that

- the code under discussion is highlighted in bold type for easy identification,
- the continuation symbol (\vdots) is used to indicate that some of the original code is omitted.

```
An example ASReml code box
bold type highlights sections
of code currently under
discussion
remaining code is not
highlighted
: indicates that some of the
original code is omitted from
the display
```

Data examples are displayed in larger boxes in the body of the text, see, for example, page 42. Other conventions are as follows:

- keyboard key names appear in SMALLCAPS, for example, TAB and ESC,
- example code within the body of the text is in this size and font and is highlighted in bold type, see pages 33 and 49,
- in the presentation of general ASReml syntax, for example
[path] asreml basename[.as] [arguments]
- typewriter font is used for text that must be typed verbatim, for example, asreml and .as after basename in the example,
- italic font is used to name information to be supplied by the user, for example, basename stands for the name of a file with an .as filename extension,
- square brackets indicate that the enclosed text and/or arguments are not always required.
- ASReml output is in this size and font, see page 35 ,
- this font is used for all other code.

The linear mixed model

Introduction
Direct product structures
Variance structures for the errors: R structures
Variance structures for the random effects: G structures

Estimation

Estimation of the variance parameters
Estimation/prediction of fixed and random effects

What are BLUPs?

Combining variance models

Inference: Random effects

Tests of hypotheses: variance parameters
Diagnostics

Inference: Fixed effects

Introduction
Incremental and Conditional Wald Statistics
Kenward and Roger Adjustments
Approximate stratum variances

2.1 The linear mixed model

Introduction

If \boldsymbol{y} denotes the $n \times 1$ vector of observations, the linear mixed model can be written as

$$
\begin{equation*}
\boldsymbol{y}=\boldsymbol{X} \boldsymbol{\tau}+\boldsymbol{Z} \boldsymbol{u}+\boldsymbol{e} \tag{2.1}
\end{equation*}
$$

where $\boldsymbol{\tau}$ is the $p \times 1$ vector of fixed effects, \boldsymbol{X} is an $n \times p$ design matrix of full column rank which associates observations with the appropriate combination of fixed effects, \boldsymbol{u} is the $q \times 1$ vector of random effects, \boldsymbol{Z} is the $n \times q$ design matrix which associates observations with the appropriate combination of random effects, and \boldsymbol{e} is the $n \times 1$ vector of residual errors.

The model (2.1) is called a linear mixed model or linear mixed effects model. It is assumed

$$
\left[\begin{array}{l}
\boldsymbol{u} \tag{2.2}\\
\boldsymbol{e}
\end{array}\right] \sim N\left(\left[\begin{array}{l}
\mathbf{0} \\
\mathbf{0}
\end{array}\right], \theta\left[\begin{array}{cc}
\boldsymbol{G}(\gamma) & \mathbf{0} \\
\mathbf{0} & \boldsymbol{R}(\phi)
\end{array}\right]\right)
$$

where the matrices \boldsymbol{G} and \boldsymbol{R} are functions of parameters γ and $\boldsymbol{\phi}$, respectively. The parameter θ is a variance parameter which we will refer to as the scale parameter. In mixed effects models with more than one residual variance, arising for example in the analysis of data with more than one section (see below) or variate, the parameter θ is fixed to one. In mixed effects models with a single residual variance then θ is equal to the residual variance $\left(\sigma^{2}\right)$. In this case \boldsymbol{R} must be a correlation matrix (see Table 2.1 for a discussion).

Direct product structures

To undertake variance modelling in ASReml you need to understand the formation of variance structures via direct products (\otimes). The direct product of two matrices $\boldsymbol{A}^{(m \times p)}$ and $\boldsymbol{B}^{(n \times q)}$ is

$$
\left[\begin{array}{lll}
a_{11} \boldsymbol{B} & \ldots & a_{1 p} \boldsymbol{B} \\
\vdots & \ddots & \vdots \\
a_{m 1} \boldsymbol{B} & \ddots & a_{m p} \boldsymbol{B}
\end{array}\right]
$$

Direct products in \mathbf{R} structures

Consider a vector of common errors associated with an experiment. The usual least squares assumption (and the default in ASReml) is that these are independently and identically distributed (IID). However, if \boldsymbol{e} was from a field experiment
laid out in a rectangular array of r rows by c columns, we could arrange the residuals as a matrix and might consider that they were autocorrelated within rows and columns. Writing the residuals as a vector in field order, that is, by sorting the residuals rows within columns (plots within blocks) the variance of the residuals might then be

$$
\sigma_{e}^{2} \boldsymbol{\Sigma}_{c}\left(\rho_{c}\right) \otimes \boldsymbol{\Sigma}_{r}\left(\rho_{r}\right)
$$

where $\boldsymbol{\Sigma}_{c}\left(\rho_{c}\right)$ and $\boldsymbol{\Sigma}_{r}\left(\rho_{r}\right)$ are correlation matrices for the row model (order r, autocorrelation parameter ρ_{r}) and column model (order c, autocorrelation parameter ρ_{c}) respectively. More specifically, a two-dimensional separable autoregressive spatial structure (AR1 $\otimes A R 1$) is sometimes assumed for the common errors in a field trial analysis (see Gogel (1997) and Cullis et al. (1998) for examples). In this case

$$
\boldsymbol{\Sigma}_{r}=\left[\begin{array}{lllll}
1 & & & & \\
\rho_{r} & 1 & & & \\
\rho_{r}^{2} & \rho_{r} & 1 & & \\
\vdots & \vdots & \vdots & \ddots & \\
\rho_{r}^{r-1} & \rho_{r}^{r-2} & \rho_{r}^{r-3} & \ldots & 1
\end{array}\right] \text { and } \quad \boldsymbol{\Sigma}_{c}=\left[\begin{array}{lllll}
1 & & & & \\
\rho_{c} & 1 & & & \\
\rho_{c}^{2} & \rho_{c} & 1 & & \\
\vdots & \vdots & \vdots & \ddots & \\
\rho_{c}^{c-1} & \rho_{c}^{c-2} & \rho_{c}^{c-3} & \ldots & 1
\end{array}\right] .
$$

See Chapter 8 Alternatively, the residuals might relate to a multivariate analysis with n_{t} traits for further de- and n units and be ordered traits within units. In this case an appropriate

$$
\boldsymbol{I}_{n} \otimes \boldsymbol{\Sigma}
$$

where $\boldsymbol{\Sigma}^{\left(n_{t} \times n_{t}\right)}$ is a general or unstructured variance matrix.

Direct products in G structures

Likewise, the random terms in \boldsymbol{u} in the model may have a direct product variance structure. For example, for a field trial with s sites, g varieties and the effects ordered varieties within sites, the model term site.variety may have the variance structure

$$
\boldsymbol{\Sigma} \otimes \boldsymbol{I}_{g}
$$

where $\boldsymbol{\Sigma}$ is the variance matrix for sites. This would imply that the varieties are independent random effects within each site, have different variances at each site, and are correlated across sites. Important Whenever a random term is formed as the interaction of two factors you should consider whether the IID assumption is sufficient or if a direct product structure might be more appropriate.

Variance structures for the errors: \mathbf{R} structures

The vector \boldsymbol{e} will in some situations be a series of vectors indexed by a factor or factors. The convention we adopt is to refer to these as sections. Thus $\boldsymbol{e}=\left[\boldsymbol{e}_{1}^{\prime}, \boldsymbol{e}_{2}^{\prime}, \ldots, \boldsymbol{e}_{s}^{\prime}\right]^{\prime}$ and the \boldsymbol{e}_{j} represent the errors of sections of the data. For example, these sections may represent different experiments in a multi-environment trial (MET), or different trials in a meta analysis. It is assumed that \boldsymbol{R} is the direct sum of s matrices $\boldsymbol{R}_{j}, j=1 \ldots s$, that is,

$$
\boldsymbol{R}=\oplus_{j=1}^{s} \boldsymbol{R}_{j}=\left[\begin{array}{ccccc}
\boldsymbol{R}_{1} & 0 & \ldots & 0 & 0 \\
0 & \boldsymbol{R}_{2} & \ldots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & \boldsymbol{R}_{s-1} & 0 \\
0 & 0 & \ldots & 0 & \boldsymbol{R}_{s}
\end{array}\right],
$$

so that each section has its own variance structure which is assumed to be independent of the structures in other sections.

A structure for the residual variance for the spatial analysis of multi-environment trials (Cullis et al., 1998) is given by

$$
\begin{aligned}
\boldsymbol{R}_{j} & =\boldsymbol{R}_{j}\left(\boldsymbol{\phi}_{j}\right) \\
& =\sigma_{j}^{2}\left(\boldsymbol{\Sigma}_{j}\left(\boldsymbol{\rho}_{j}\right)\right) .
\end{aligned}
$$

Each section represents a trial and this model accounts for between trial error variance heterogeneity $\left(\sigma_{j}^{2}\right)$ and possibly a different spatial variance model for each trial.

In the simplest case the matrix \boldsymbol{R} could be known and proportional to an identity matrix. Each component matrix, \boldsymbol{R}_{j} (or \boldsymbol{R} itself for one section) is assumed to be the direct product (see Searle, 1982) of one, two or three component matrices. The component matrices are related to the underlying structure of the data. If the structure is defined by factors, for example, replicates, rows and columns, then the matrix \boldsymbol{R} can be constructed as a direct product of three matrices describing the nature of the correlation across replicates, rows and columns. These factors must completely describe the structure of the data, which means that

1. the number of combined levels of the factors must equal the number of data points,
2. each factor combination must uniquely specify a single data point.

These conditions are necessary to ensure the expression $\operatorname{var}(\boldsymbol{e})=\theta \boldsymbol{R}$ is valid. The assumption that the overall variance structure can be constructed as a direct
product of matrices corresponding to underlying factors is called the assumption of separability and assumes that any correlation process across levels of a factor is independent of any other factors in the term. Multivariate data and repeated measures data usually satisfy the assumption of separability. In particular, if the data are indexed by factors units and traits (for multivariate data) or times (for repeated measures data), then the R structure may be written as units \otimes traits or units \otimes times. This assumption is sometimes required to make the estimation process computationally feasible, though it can be relaxed, for certain applications, for example fitting isotropic covariance models to irregularly spaced spatial data.

Variance structures for the random effects: G structures

The $q \times 1$ vector of random effects is often composed of b subvectors $\boldsymbol{u}=$ $\left[\begin{array}{llll}\boldsymbol{u}_{1}^{\prime} & \boldsymbol{u}_{2}^{\prime} & \ldots & \left.\boldsymbol{u}_{b}^{\prime}\right]^{\prime} \text { where the subvectors } \boldsymbol{u}_{i} \text { are of length } q_{i} \text { and these subvectors }\end{array}\right.$ are usually assumed independent normally distributed with variance matrices $\theta \boldsymbol{G}_{i}$. Thus just like \boldsymbol{R} we have

$$
\boldsymbol{G}=\oplus_{i=1}^{b} \boldsymbol{G}_{i}=\left[\begin{array}{ccccc}
\boldsymbol{G}_{1} & 0 & \ldots & 0 & 0 \\
0 & \boldsymbol{G}_{2} & \ldots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & \boldsymbol{G}_{b-1} & 0 \\
0 & 0 & \ldots & 0 & \boldsymbol{G}_{b}
\end{array}\right] .
$$

There is a corresponding partition in $\boldsymbol{Z}, \boldsymbol{Z}=\left[\begin{array}{lll}\boldsymbol{Z}_{1} & \boldsymbol{Z}_{2} \ldots \boldsymbol{Z}_{b}\end{array}\right]$. As before each submatrix, \boldsymbol{G}_{i}, is assumed to be the direct product of one, two or three component matrices. These matrices are indexed for each of the factors constituting the term in the linear model. For example, the term site.genotype has two factors and so the matrix \boldsymbol{G}_{i} is comprised of two component matrices defining the variance structure for each factor in the term.

Models for the component matrices \boldsymbol{G}_{i} include the standard model for which $\boldsymbol{G}_{i}=\gamma_{i} \boldsymbol{I}_{q_{i}}$ and direct product models for correlated random factors given by

$$
\boldsymbol{G}_{i}=\boldsymbol{G}_{i 1} \otimes \boldsymbol{G}_{i 2} \otimes \boldsymbol{G}_{i 3}
$$

for three component factors. The vector \boldsymbol{u}_{i} is therefore assumed to be the vector representation of a 3 -way array. For two factors the vector \boldsymbol{u}_{i} is simply the vec of a matrix with rows and columns indexed by the component factors in the term, where vec of a matrix is a function which stacks the columns of its matrix argument below each other.

A range of models are available for the components of both \boldsymbol{R} and \boldsymbol{G}. They include correlation (C) models (that is, where the diagonals are 1), or covariance
(V) models and are discussed in detail in Chapter 7. Some correlation models include

- autoregressive (order 1 or 2)
- moving average (order 1 or 2)
- $\operatorname{ARMA}(1,1)$
- uniform
- banded
- general correlation.

Some of the covariance models include

- diagonal (that is, independent with heterogeneous variances)
- antedependence
- unstructured
- factor analytic.

There is the facility within ASReml to allow for a nonzero covariance between the subvectors of \boldsymbol{u}, for example in random regression models. In this setting the intercept and say the slope for each unit are assumed to be correlated and it is more natural to consider the two component terms as a single term, which gives rise to a single G structure. This concept is discussed later.

2.2 Estimation

Estimation involves two processes that are closely linked. They are performed within the 'engine' of ASReml. One process involves estimation of $\boldsymbol{\tau}$ and prediction of \boldsymbol{u} (although the latter may not always be of interest) for given $\theta, \boldsymbol{\phi}$ and $\boldsymbol{\gamma}$. The other process involves estimation of these variance parameters. Note that in the following sections we have set $\theta=1$ to simplify the presentation of results.

Estimation of the variance parameters

Estimation of the variance parameters is carried out using residual or restricted maximum likelihood (REML), developed by Patterson and Thompson (1971). An historical development of the theory can be found in Searle et al. (1992). Note firstly that

$$
\begin{equation*}
\boldsymbol{y} \sim N(\boldsymbol{X} \boldsymbol{\tau}, \boldsymbol{H}) \tag{2.3}
\end{equation*}
$$

where $\boldsymbol{H}=\boldsymbol{R}+\boldsymbol{Z} \boldsymbol{G} \boldsymbol{Z}^{\prime}$. REML does not use (2.3) for estimation of variance parameters, but rather uses a distribution free of $\boldsymbol{\tau}$, essentially based on error contrasts or residuals. The derivation given below is presented in Verbyla (1990).

We transform \boldsymbol{y} using a non-singular matrix $\boldsymbol{L}=\left[\begin{array}{ll}\boldsymbol{L}_{1} & \boldsymbol{L}_{2}\end{array}\right]$ such that

$$
\boldsymbol{L}_{1}^{\prime} \boldsymbol{X}=I_{p}, \quad \boldsymbol{L}_{2}^{\prime} \boldsymbol{X}=\mathbf{0} .
$$

If $\boldsymbol{y}_{j}=\boldsymbol{L}_{j}^{\prime} \boldsymbol{y}, j=1,2$,

$$
\left[\begin{array}{l}
\boldsymbol{y}_{1} \\
\boldsymbol{y}_{2}
\end{array}\right] \sim N\left(\left[\begin{array}{c}
\boldsymbol{\tau} \\
\mathbf{0}
\end{array}\right],\left[\begin{array}{lll}
\boldsymbol{L}_{1}^{\prime} \boldsymbol{H} \boldsymbol{L}_{1} & \boldsymbol{L}_{1}^{\prime} \boldsymbol{H} \boldsymbol{L}_{2} \\
\boldsymbol{L}_{2}^{\prime} \boldsymbol{H} \boldsymbol{L}_{1} & \boldsymbol{L}_{2}^{\prime} \boldsymbol{H} \boldsymbol{L}_{2}
\end{array}\right]\right) .
$$

The full distribution of $\boldsymbol{L}^{\prime} \boldsymbol{y}$ can be partitioned into a conditional distribution, namely $\boldsymbol{y}_{1} \mid \boldsymbol{y}_{2}$, for estimation of $\boldsymbol{\tau}$, and a marginal distribution based on \boldsymbol{y}_{2} for estimation of γ and $\boldsymbol{\phi}$; the latter is the basis of the residual likelihood.

The estimate of $\boldsymbol{\tau}$ is found by equating \boldsymbol{y}_{1} to its conditional expectation, and after some algebra we find,

$$
\hat{\boldsymbol{\tau}}=\left(\boldsymbol{X}^{\prime} \boldsymbol{H}^{-1} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\prime} \boldsymbol{H}^{-1} \boldsymbol{y}
$$

Estimation of $\boldsymbol{\kappa}=\left[\gamma^{\prime} \phi^{\prime}\right]^{\prime}$ is based on the log residual likelihood,

$$
\begin{align*}
\ell_{R} & =-\frac{1}{2}\left(\log \operatorname{det} \boldsymbol{L}_{2}^{\prime} \boldsymbol{H}^{-1} \boldsymbol{L}_{2}+\boldsymbol{y}_{2}^{\prime}\left(\boldsymbol{L}_{2}^{\prime} \boldsymbol{H} L_{2}\right)^{-1} \boldsymbol{y}_{2}\right) \\
& =-\frac{1}{2}\left(\log \operatorname{det} \boldsymbol{X}^{\prime} \boldsymbol{H}^{-1} \boldsymbol{X}+\log \operatorname{det} \boldsymbol{H}+\boldsymbol{y}^{\prime} \boldsymbol{P} \boldsymbol{y}_{2}\right) \tag{2.4}
\end{align*}
$$

where

$$
\boldsymbol{P}=\boldsymbol{H}^{-1}-\boldsymbol{H}^{-1} \boldsymbol{X}\left(\boldsymbol{X}^{\prime} \boldsymbol{H}^{-1} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\prime} \boldsymbol{H}^{-1} .
$$

Note that $\boldsymbol{y}^{\prime} \boldsymbol{P} \boldsymbol{y}=(\boldsymbol{y}-\boldsymbol{X} \hat{\boldsymbol{\tau}})^{\prime} \boldsymbol{H}^{-1}(\boldsymbol{y}-\boldsymbol{X} \hat{\boldsymbol{\tau}})$. The log-likelihood (2.4) depends on \boldsymbol{X} and not on the particular non-unique transformation defined by \boldsymbol{L}.

The log residual likelihood (ignoring constants) can be written in terms of the mixed model equations (see equation 2.11) with $\boldsymbol{W}=\left[\begin{array}{ll}\boldsymbol{X} & \boldsymbol{Z}\end{array}\right]$ as

$$
\begin{equation*}
\ell_{R}=-\frac{1}{2}\left(\log \operatorname{det} \boldsymbol{C}+\log \operatorname{det} \boldsymbol{R}+\log \operatorname{det} \boldsymbol{G}+\boldsymbol{y}^{\prime} \boldsymbol{P} \boldsymbol{y}\right) \tag{2.5}
\end{equation*}
$$

where $\boldsymbol{C}=\boldsymbol{W}^{\prime} \boldsymbol{R}^{-1} \boldsymbol{W}+\boldsymbol{G}^{*}, \boldsymbol{G}^{*}=\left[\begin{array}{cc}\mathbf{0} & \mathbf{0} \\ \mathbf{0} & \boldsymbol{G}^{-1}\end{array}\right]$ and

$$
\boldsymbol{P}=\boldsymbol{R}^{-1}-\boldsymbol{R}^{-1} \boldsymbol{W} \boldsymbol{C}^{-1} \boldsymbol{W}^{\prime} \boldsymbol{R}^{-1}
$$

Letting $\boldsymbol{\kappa}=(\boldsymbol{\gamma}, \boldsymbol{\phi})$, the REML estimates of κ_{i} are found by calculating the score

$$
\begin{equation*}
U\left(\kappa_{i}\right)=\partial \ell_{R} / \partial \kappa_{i}=-\frac{1}{2}\left[\operatorname{tr}\left(\boldsymbol{P} \boldsymbol{H}_{i}\right)-\boldsymbol{y}^{\prime} \boldsymbol{P} \boldsymbol{H}_{i} \boldsymbol{P} \boldsymbol{y}\right] \tag{2.6}
\end{equation*}
$$

and equating to zero. Note that $\boldsymbol{H}_{i}=\partial \boldsymbol{H} / \partial \kappa_{i}$.

The elements of the observed information matrix are

$$
\begin{align*}
&-\frac{\partial^{2} \ell_{R}}{\partial \kappa_{i} \partial \kappa_{j}}=\frac{1}{2} \operatorname{tr}\left(\boldsymbol{P} \boldsymbol{H}_{i j}\right)-\frac{1}{2} \operatorname{tr}\left(\boldsymbol{P} \boldsymbol{H}_{i} \boldsymbol{P} \boldsymbol{H}_{j}\right) \\
&+\boldsymbol{y}^{\prime} \boldsymbol{P} \boldsymbol{H}_{i} \boldsymbol{P} \boldsymbol{H}_{j} \boldsymbol{P} \boldsymbol{y}-\frac{1}{2} \boldsymbol{y}^{\prime} \boldsymbol{P} \boldsymbol{H}_{i j} \boldsymbol{P} \boldsymbol{y} \tag{2.7}
\end{align*}
$$

where $\boldsymbol{H}_{i j}=\partial^{2} \boldsymbol{H} / \partial \kappa_{i} \partial \kappa_{j}$.

The elements of the expected information matrix are

$$
\begin{equation*}
\mathrm{E}\left(-\frac{\partial^{2} \ell_{R}}{\partial \kappa_{i} \partial \kappa_{j}}\right)=\frac{1}{2} \operatorname{tr}\left(\boldsymbol{P} \boldsymbol{H}_{i} \boldsymbol{P} \boldsymbol{H}_{j}\right) \tag{2.8}
\end{equation*}
$$

Given an initial estimate $\boldsymbol{\kappa}^{(0)}$, an update of $\boldsymbol{\kappa}, \boldsymbol{\kappa}^{(1)}$ using the Fisher-scoring (FS) algorithm is

$$
\begin{equation*}
\boldsymbol{\kappa}^{(1)}=\boldsymbol{\kappa}^{(0)}+\boldsymbol{I}\left(\boldsymbol{\kappa}^{(0)}, \boldsymbol{\kappa}^{(0)}\right)^{-1} \boldsymbol{U}\left(\boldsymbol{\kappa}^{(0)}\right) \tag{2.9}
\end{equation*}
$$

where $\boldsymbol{U}\left(\boldsymbol{\kappa}^{(0)}\right)$ is the score vector (2.6) and $\boldsymbol{I}\left(\boldsymbol{\kappa}^{(0)}, \boldsymbol{\kappa}^{(0)}\right)$ is the expected information matrix (2.8) of $\boldsymbol{\kappa}$ evaluated at $\boldsymbol{\kappa}^{(0)}$.

For large models or large data sets, the evaluation of the trace terms in either (2.7) or (2.8) is either not feasible or is very computer intensive. To overcome this problem ASReml uses the AI algorithm (Gilmour, Thompson and Cullis, 1995). The matrix denoted by \mathcal{I}_{A} is obtained by averaging (2.7) and (2.8) and approximating $\boldsymbol{y}^{\prime} \boldsymbol{P} \boldsymbol{H}_{i j} \boldsymbol{P} \boldsymbol{y}$ by its expectation, $\operatorname{tr}\left(\boldsymbol{P} \boldsymbol{H}_{i j}\right)$ in those cases when $\boldsymbol{H}_{i j} \neq 0$. For variance components models (that is those linear with respect to variances in $\boldsymbol{H})$, the terms in \mathcal{I}_{A} are exact averages of those in (2.7) and (2.8). The basic idea is to use $\mathcal{I}_{A}\left(\kappa_{i}, \kappa_{j}\right)$ in place of the expected information matrix in (2.9) to update $\boldsymbol{\kappa}$.

The elements of \mathcal{I}_{A} are

$$
\begin{equation*}
\mathcal{I}_{\mathcal{A}}\left(\kappa_{i}, \kappa_{j}\right)=\frac{1}{2} \boldsymbol{y}^{\prime} \boldsymbol{P} \boldsymbol{H}_{i} \boldsymbol{P} \boldsymbol{H}_{j} \boldsymbol{P} \boldsymbol{y} \tag{2.10}
\end{equation*}
$$

The \mathcal{I}_{A} matrix is the (scaled) residual sums of squares and products matrix of

$$
\boldsymbol{y}=\left[\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{k}\right]
$$

where \boldsymbol{y}_{i} is the 'working' variate for $\boldsymbol{\kappa}_{i}$ and is given by

$$
\begin{aligned}
\boldsymbol{y}_{i} & =\boldsymbol{H}_{i} \boldsymbol{P} \boldsymbol{y} \\
& =\boldsymbol{H}_{i} \boldsymbol{R}^{-1} \tilde{\boldsymbol{e}} \\
& =\boldsymbol{R}_{i} \boldsymbol{R}^{-1} \tilde{\boldsymbol{e}}, \quad \kappa_{i} \in \boldsymbol{\phi} \\
& =\boldsymbol{Z} \boldsymbol{G}_{i} \boldsymbol{G}^{-1} \tilde{\boldsymbol{u}}, \quad \kappa_{i} \in \gamma
\end{aligned}
$$

where $\tilde{\boldsymbol{e}}=\boldsymbol{y}-\boldsymbol{X} \hat{\boldsymbol{\tau}}-\boldsymbol{Z} \tilde{\boldsymbol{u}}, \hat{\boldsymbol{\tau}}$ and $\tilde{\boldsymbol{u}}$ are solutions to (2.11). In this form the AI matrix is relatively straightforward to calculate.

The combination of the Al algorithm with sparse matrix methods, in which only non-zero values are stored, gives an efficient algorithm in terms of both computing time and workspace.

Estimation/prediction of the fixed and random effects

To estimate $\boldsymbol{\tau}$ and predict \boldsymbol{u} the objective function

$$
\log f_{\boldsymbol{Y}}(\boldsymbol{y} \mid \boldsymbol{u} ; \boldsymbol{\tau}, \boldsymbol{R})+\log f_{\boldsymbol{U}}(\boldsymbol{u} ; \boldsymbol{G})
$$

is used. The is the log-joint distribution of $(\boldsymbol{Y}, \boldsymbol{u})$.
Differentiating with respect to $\boldsymbol{\tau}$ and \boldsymbol{u} leads to the mixed model equations (Robinson, 1991) which are given by

$$
\left[\begin{array}{cc}
\boldsymbol{X}^{\prime} \boldsymbol{R}^{-1} \boldsymbol{X} & \boldsymbol{X}^{\prime} \boldsymbol{R}^{-1} \boldsymbol{Z} \tag{2.11}\\
\boldsymbol{Z}^{\prime} \boldsymbol{R}^{-1} \boldsymbol{X} & \boldsymbol{Z}^{\prime} \boldsymbol{R}^{-1} \boldsymbol{Z}+\boldsymbol{G}^{-1}
\end{array}\right]\left[\begin{array}{c}
\hat{\tau} \\
\tilde{\boldsymbol{u}}
\end{array}\right]=\left[\begin{array}{c}
\boldsymbol{X}^{\prime} \boldsymbol{R}^{-1} \boldsymbol{y} \\
\boldsymbol{Z}^{\prime} \boldsymbol{R}^{-1} \boldsymbol{y}
\end{array}\right] .
$$

These can be written as

$$
\boldsymbol{C} \tilde{\boldsymbol{\beta}}=\boldsymbol{W} \boldsymbol{R}^{-1} \boldsymbol{y}
$$

where $\boldsymbol{C}=\boldsymbol{W}^{\prime} \boldsymbol{R}^{-1} \boldsymbol{W}+\boldsymbol{G}^{*}, \boldsymbol{\beta}=\left[\begin{array}{ll}\boldsymbol{\tau}^{\prime} & \boldsymbol{u}^{\prime}\end{array}\right]^{\prime}$ and

$$
G^{*}=\left[\begin{array}{cc}
\mathbf{0} & \mathbf{0} \\
\mathbf{0} & G^{-1}
\end{array}\right]
$$

The solution of (2.11) requires values for γ and ϕ. In practice we replace γ and ϕ by their REML estimates $\hat{\gamma}$ and $\hat{\phi}$.

Note that $\hat{\boldsymbol{\tau}}$ is the best linear unbiased estimator (BLUE) of $\boldsymbol{\tau}$, while $\tilde{\boldsymbol{u}}$ is the best linear unbiased predictor (BLUP) of \boldsymbol{u} for known $\boldsymbol{\gamma}$ and $\boldsymbol{\phi}$. We also note that

$$
\tilde{\boldsymbol{\beta}}-\boldsymbol{\beta}=\left[\begin{array}{c}
\hat{\boldsymbol{\tau}}-\boldsymbol{\tau} \\
\tilde{\boldsymbol{u}}-\boldsymbol{u}
\end{array}\right] \sim N\left(\left[\begin{array}{l}
\mathbf{0} \\
\mathbf{0}
\end{array}\right], \boldsymbol{C}^{-1}\right) .
$$

2.3 What are BLUPs?

Consider a balanced one-way classification. For data records ordered r repeats within b treatments regarded as random effects, the linear mixed model is $\boldsymbol{y}=$ $\boldsymbol{X} \boldsymbol{\tau}+\boldsymbol{Z u}+\boldsymbol{e}$ where $\boldsymbol{X}=\mathbf{1}_{b} \otimes \mathbf{1}_{r}$ is the design matrix for $\boldsymbol{\tau}$ (the overall mean), $\boldsymbol{Z}=\boldsymbol{I}_{b} \otimes \mathbf{1}_{r}$ is the design matrix for the b (random) treatment effects u_{i} and \boldsymbol{e} is the error vector. Assuming that the treatment effects are random implies that $\boldsymbol{u} \sim N\left(\boldsymbol{A} \boldsymbol{\psi}, \sigma_{b}^{2} \boldsymbol{I}_{b}\right)$, for some design matrix \boldsymbol{A} and parameter vector $\boldsymbol{\psi}$. It can be shown that

$$
\begin{equation*}
\tilde{\boldsymbol{u}}=\frac{r \sigma_{b}^{2}}{r \sigma_{b}^{2}+\sigma^{2}}(\overline{\boldsymbol{y}}-\mathbf{1} \bar{y} . .)+\frac{\sigma^{2}}{r \sigma_{b}^{2}+\sigma^{2}} \boldsymbol{A} \boldsymbol{\psi} \tag{2.12}
\end{equation*}
$$

where $\overline{\boldsymbol{y}}$ is the vector of treatment means, \bar{y}. is the grand mean. The differences of the treatment means and the grand mean are the estimates of treatment effects if treatment effects are fixed. The BLUP is therefore a weighted mean of the data based estimate and the 'prior' mean $\boldsymbol{A} \boldsymbol{\psi}$. If $\boldsymbol{\psi}=\mathbf{0}$, the BLUP in (2.12) becomes

$$
\begin{equation*}
\tilde{\boldsymbol{u}}=\frac{r \sigma_{b}^{2}}{r \sigma_{b}^{2}+\sigma^{2}}(\overline{\boldsymbol{y}}-\mathbf{1} \overline{\boldsymbol{y}} . .) \tag{2.13}
\end{equation*}
$$

and the BLUP is a so-called shrinkage estimate. As $r \sigma_{b}^{2}$ becomes large relative to σ^{2}, the BLUP tends to the fixed effect solution, while for small $r \sigma_{b}^{2}$ relative to σ^{2} the BLUP tends towards zero, the assumed initial mean. Thus (2.13) represents a weighted mean which involves the prior assumption that the u_{i} have zero mean.

Note also that the BLUPs in this simple case are constrained to sum to zero. This is essentially because the unit vector defining \boldsymbol{X} can be found by summing the columns of the \boldsymbol{Z} matrix. This linear dependence of the matrices translates to dependence of the BLUPs and hence constraints. This aspect occurs whenever the column space of \boldsymbol{X} is contained in the column space of \boldsymbol{Z}. The dependence is slightly more complex with correlated random effects.

2.4 Combining variance models

The combination of variance models within G structures and R structures and between G structures and R structures is a difficult and important concept. The underlying principle is that each \boldsymbol{R}_{i} and \boldsymbol{G}_{i} variance model can only have a single scaling variance parameter associated with it. If there is more than one scaling variance parameter for any \boldsymbol{R}_{i} or \boldsymbol{G}_{i} then the variance model is overspecified, or nonidentifiable. Some variance models are presented in Table 2.1 to illustrate this principle.

While all 9 forms of model in Table 2.1 can be specified within ASReml only models of forms 1 and 2 are recommended. Models 4-6 have too few variance parameters and are likely to cause serious estimation problems. For model 3, where the scale parameter θ has been fitted (univariate single site analysis), it becomes the scale for \boldsymbol{G}. This parameterisation is bizarre and is not recommended. Models 7-9 have too many variance parameters and ASReml will arbitrarily fix one of the variance parameters leading to possible confusion for the user. If you fix the variance parameter to a particular value then it does not count for the purposes of applying the principle that there be only one scaling variance parameter. That is, models 7-9 can be made identifiable by fixing all but one of the nonidentifiable scaling parameters in each of \boldsymbol{G} and \boldsymbol{R} to a particular value.

Table 2.1 Combination of models for G and R structures

model	G_{1}	G_{2}	R_{1}	R_{2}	θ	comment

1.	V	C	C	C	y
2.	V	C	V	C	n
3.	C	C	V	C	y
4.	$*$	$*$	C	C	n
5.	C	C	C	C	y
6.	C	C	V	C	n
7.	V	V	$*$	$*$	$*$
8.	V	C	V	C	y
9.	$*$	$*$	V	V	$*$

valid
valid
valid, but not recommended
inappropriate as R is a correlation model
inappropriate, same scale for R and G
inappropriate, no scaling parameter for G
nonidentifiable, 2 scaling parameters for G
nonidentifiable, scale for R and overall scale
nonidentifiable, 2 scaling parameters for R

* indicates the entry is not relevant in this case

Note that G_{1} and G_{2} are interchangeable in this table, as are R_{1} and R_{2}

2.5 Inference: Random effects

Tests of hypotheses: variance parameters

Inference concerning variance parameters of a linear mixed effects model usually relies on approximate distributions for the (RE)ML estimates derived from asymptotic results.

It can be shown that the approximate variance matrix for the REML estimates is given by the inverse of the expected information matrix (Cox and Hinkley, 1974, section 4.8). Since this matrix is not available in ASReml we replace the expected information matrix by the AI matrix. Furthermore the REML estimates are consistent and asymptotically normal, though in small samples this approximation appears to be unreliable (see later).

A general method for comparing the fit of nested models fitted by REML is the REML likelihood ratio test, or REMLRT. The REMLRT is only valid if the fixed effects are the same for both models. In ASReml this requires not only the same fixed effects model, but also the same parameterisation.

If $\ell_{R 2}$ is the REML log-likelihood of the more general model and $\ell_{R 1}$ is the REML log-likelihood of the restricted model (that is, the REML log-likelihood under the null hypothesis), then the REMLRT is given by

$$
\begin{equation*}
D=2 \log \left(\ell_{R 2} / \ell_{R 1}\right)=2\left[\log \left(\ell_{R 2}\right)-\log \left(\ell_{R 1}\right)\right] \tag{2.14}
\end{equation*}
$$

which is strictly positive. If r_{i} is the number of parameters estimated in model i, then the asymptotic distribution of the REMLRT, under the restricted model is $\chi_{r_{2}-r_{1}}^{2}$.

The REMLRT is implicitly two-sided, and must be adjusted when the test involves an hypothesis with the parameter on the boundary of the parameter space. In fact, theoretically it can be shown that for a single variance component, say, the asymptotic distribution of the REMLRT is a mixture of χ^{2} variates, where the mixing probabilities are 0.5 , one with 0 degrees of freedom (spike at 0) and the other with 1 degree of freedom. The approximate P -value for the REMLRT statistic (D), is $0.5\left(1-\operatorname{Pr}\left(\chi_{1}^{2} \leq d\right)\right)$ where d is the observed value of D. The distribution of the REMLRT for the test that k variance components are zero, or tests involved in random regressions, which involve both variance and covariance components, involves a mixture of χ^{2} variates from 0 to k degrees of freedom. See Self and Liang (1987) for details.

Tests concerning variance components in generally balanced designs, such as the
balanced one-way classification, can be derived from the usual analysis of variance. It can be shown that the REMLRT for a variance component being zero is a monotone function of the F -statistic for the associated term.

To compare two (or more) non-nested models we can evaluate the Akaike Information Criteria (AIC) or the Bayesian Information Criteria (BIC) for each model. These are given by

$$
\begin{align*}
& \mathrm{AIC}=-2 \ell_{R i}+2 t_{i} \\
& \mathrm{BIC}=-2 \ell_{R i}+t_{i} \log \nu \tag{2.15}
\end{align*}
$$

where t_{i} is the number of variance parameters in model i and $\nu=n-p$ is the residual degrees of freedom. AIC and BIC are calculated for each model and the model with the smallest value is chosen as the preferred model.

Diagnostics

In this section we will briefly review some of the diagnostics that have been implemented in ASReml for examining the adequacy of the assumed variance matrix for either R or G structures, or for examining the distributional assumptions regarding \boldsymbol{e} or \boldsymbol{u}. Firstly we note that the BLUP of the residual vector is given by

$$
\begin{align*}
\tilde{\boldsymbol{e}} & =\boldsymbol{y}-\boldsymbol{W} \tilde{\boldsymbol{\beta}} \\
& =\boldsymbol{R P} \boldsymbol{y} \tag{2.16}
\end{align*}
$$

It follows that

$$
\begin{aligned}
\mathrm{E}(\tilde{\boldsymbol{e}}) & =\mathbf{0} \\
\operatorname{var}(\tilde{\boldsymbol{e}}) & =\boldsymbol{R}-\boldsymbol{W} \boldsymbol{C}^{-1} \boldsymbol{W}^{\prime}
\end{aligned}
$$

The matrix $\boldsymbol{W} \boldsymbol{C}^{-1} \boldsymbol{W}^{\prime}$ is the so-called 'extended hat' matrix. It is the linear mixed effects model analogue of $\boldsymbol{X}\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\prime}$ for ordinary linear models. The diagonal elements are returned in the. yht file by ASReml .

The variogram has been suggested as a useful diagnostic for assisting with the identification of appropriate variance models for spatial data (Cressie, 1991). Gilmour et al. (1997) demonstrate its usefulness for the identification of the sources of variation in the analysis of field experiments. If the elements of the data vector (and hence the residual vector) are indexed by a vector of spatial coordinates, $s_{i}, i=1, \ldots, n$, then the ordinates of the sample variogram are given by

$$
v_{i j}=\frac{1}{2}\left[\tilde{e}_{i}\left(s_{i}\right)-\tilde{e}_{j}\left(s_{j}\right)\right]^{2}, \quad i, j=1, \ldots, n ; \quad i \neq j
$$

New The sample variogram reported by ASReml has two forms depending on whether the spatial coordinates represent a complete rectangular lattice (as typical of a field trial) or not. In the lattice case, the sample variogram is calculated from the triple $\left(l_{i j 1}, l_{i j 2}, v_{i j}\right)$ where $l_{i j 1}=s_{i 1}-s_{j 1}$ and $l_{i j 2}=s_{i 2}-s_{j 2}$ are the displacements. As there will be many $v_{i j}$ with the same displacements, ASReml calculates the means for each displacement pair $l_{i j 1}, l_{i j 2}$ either ignoring the signs (default) or separately for same sign and opposite sign (!TWOWAY), after grouping the larger displacements: $9-10,11-14,15-20, \ldots$. The result is displayed as a perspective plot (see page 205) of the one or two surfaces indexed by absolute displacement group. In this case, the two directions may be on different scales.

Otherwise ASReml forms a variogram based on polar coordinates. It calculates the distance between points $d_{i j}=\sqrt{l_{i j 1}^{2}+l_{i j 2}^{2}}$ and an angle $\theta_{i j}\left(-180<\theta_{i j}<180\right)$ subtended by the line from $(0,0)$ to $\left(l_{i j 1}, l_{i j 2}\right)$ with the x-axis. The angle can be calculated as $\theta_{i j}=\tan ^{-1}\left(l_{i j 1} / l_{i j 2}\right)$ choosing $\left(0<\theta_{i j}<180\right)$ if $l_{i j 2}>0$ and $\left(-180<\theta_{i j}<0\right)$ if $l_{i j 2}<0$. Note that the variogram has angular symmetry in that $v_{i j}=v_{j i}, d_{i j}=d_{j i}$ and $\left|\theta_{i j}-\theta_{j i}\right|=180$. The variogram presented averages the $v_{i j}$ within 12 distance classes and 4,6 or 8 sectors (selected using a ! VGSECTORS qualifier) centred on an angle of $(i-1) * 180 / s \quad(i=1, \ldots s)$. A figure is produced which reports the trends in $\bar{v}_{i j}$ with increasing distance for each sector.

ASReml also computes the variogram from predictors of random effects which appear to have a variance structures defined in terms of distance. The variogram details are reported in the .res file.

2.6 Inference: Fixed effects

Introduction

New Inference for fixed effects in linear mixed models introduces some difficulties. In general, the methods used to construct F-tests in analysis of variance and regression cannot be used for the diversity of applications of the general linear mixed model available in ASReml. One approach would be to use likelihood ratio methods (see Welham and Thompson, 1997) although their approach is not easily implemented.

Wald-type test procedures are generally favoured for conducting tests concerning $\boldsymbol{\tau}$. The traditional Wald statistic to test the hypothesis $H_{0}: \boldsymbol{L} \boldsymbol{\tau}=\boldsymbol{l}$ for given
$\boldsymbol{L}, r \times p$, and $\boldsymbol{l}, r \times 1$, is given by

$$
\begin{equation*}
\mathcal{W}=(\boldsymbol{L} \hat{\boldsymbol{\tau}}-\boldsymbol{l})^{\prime}\left\{\boldsymbol{L}\left(\boldsymbol{X}^{\prime} \boldsymbol{H}^{-1} \boldsymbol{X}\right)^{-1} \boldsymbol{L}^{\prime}\right\}^{-1}(\boldsymbol{L} \hat{\boldsymbol{\tau}}-\boldsymbol{l}) \tag{2.17}
\end{equation*}
$$

and asymptotically, this statistic has a chi-square distribution on r degrees of freedom. These are marginal tests, so that there is an adjustment for all other terms in the fixed part of the model. It is also anti-conservative if p-values are constructed because it assumes the variance parameters are known.

The small sample behaviour of such statistics has been considered by Kenward and Roger (1997) in some detail. They presented a scaled Wald statistic, together with an F-approximation to its sampling distribution which they showed performed well in a range (though limited in terms of the range of variance models available in ASReml) of settings.

In the following we describe the facilities now available in ASReml for conducting inference concerning terms which are the in dense fixed effects model component of the general linear mixed model. These facilities are not available for any terms in the sparse model. These include facilities for computing two types of Wald statistics and partial implementation of the Kenward and Roger adjustments.

Incremental and Conditional Wald Statistics

The basic tool for inference is the Wald statistic defined in equation 2.17. ASReml produces a test of fixed effects, that reduces to an F-statistic in special cases, by dividing the Wald test, constructed with $\boldsymbol{l}=0$, by r, the numerator degrees of freedom. In this form it is possible to perform an approximate F test if we can deduce the denominator degrees of freedom. However, there are several ways \boldsymbol{L} can be defined to construct a test for a particular model term, two of which are available in ASReml. For balanced designs, these Wald F-statistics are numerically identical to the F-tests obtained from the standard analysis of variance.

The first method for computing Wald statistics (for each term) is the so-called "incremental" form. For this method, Wald statistics are computed from an incremental sum of squares in the spirit of the approach used in classical regression analysis (see Searle, 1971). For example if we consider a very simple model with terms relating to the main effects of two qualitative factors A and B, given symbolically by

$$
y \sim 1+A+B
$$

where the 1 represents the constant term (μ), then the incremental sums of
squares for this model can be written as the sequence

$$
\begin{aligned}
R(1) & \\
R(\mathrm{~A} \mid 1) & =R(1, \mathrm{~A})-R(1) \\
R(\mathrm{~B} \mid 1, \mathrm{~A}) & =R(1, \mathrm{~A}, \mathrm{~B})-R(1, \mathrm{~A})
\end{aligned}
$$

where the $R(\cdot)$ operator denotes the reduction in the total sums of squares due to a model containing its argument and $R(\cdot \cdot \cdot)$ denotes the difference between the reduction in the sums of squares for any pair of (nested) models. Thus $R(\mathrm{~B} \mid 1, \mathrm{~A})$ represents the difference between the reduction in sums of squares between the so-called maximal "model"

$$
\mathrm{y} \sim 1+\mathrm{A}+\mathrm{B}
$$

and

$$
\mathrm{y} \sim 1+\mathrm{A}
$$

Implicit in these calculations is that

- we only compute Wald statistics for estimable functions (Searle, 1971, page 408),
- all variance parameters are held fixed at the current REML estimates from the maximal model

In this example, it is clear that the incremental Wald statistics may not produce the desired test for the main effect of A , as in many cases we would like to produce a Wald statistic for A based on

$$
R(\mathrm{~A} \mid 1, \mathrm{~B})=R(1, \mathrm{~A}, \mathrm{~B})-R(1, \mathrm{~B})
$$

The issue is further complicated when we invoke "marginality" considerations. The issue of marginality between terms in a linear (mixed) model has been discussed in much detail by Nelder (1977). In this paper Nelder defines marginality for terms in a factorial linear model with qualitative factors, but later Nelder (1994) extended this concept to functional marginality for terms involving quantitative covariates and for mixed terms which involve an interaction between quantitative covariates and qualitative factors. Referring to our simple illustrative example above, with a full factorial linear model given symbolically by

$$
y \sim 1+A+B+A . B
$$

then A and B are said to be marginal to $A \cdot B$, and 1 is marginal to A and B. In a three way factorial model given by

$$
\mathrm{y} \sim 1+\mathrm{A}+\mathrm{B}+\mathrm{C}+\mathrm{A} \cdot \mathrm{~B}+\mathrm{A} \cdot \mathrm{C}+\mathrm{B} \cdot \mathrm{C}+\mathrm{A} \cdot \mathrm{~B} \cdot \mathrm{C}
$$

the terms A, B, C, A.B, A.C and B.C are marginal to A.B.C. Nelder $(1977,1994)$ argues that meaningful and interesting tests for terms in such models can only be conducted for those tests which respect marginality relations. This philosophy underpins the following description of the second Wald statistic available in ASReml, the so-called "conditional" Wald statistic. This method is invoked by placing ! FCON on the datafile line. ASReml attempts to construct conditional Wald statistics for each term in the fixed dense linear model so that marginality relations are respected. As a simple example, for the three way factorial model the conditional Wald statistics would be computed as

Term		Sums of Squares		M code
1		R(1)		
A		$\mathrm{R}(\mathrm{A} \mid 1, \mathrm{~B}, \mathrm{C}, \mathrm{B} . \mathrm{C})$	$=\mathrm{R}(1, \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{B} . \mathrm{C})-\mathrm{R}(1, \mathrm{~B}, \mathrm{C}, \mathrm{B} . \mathrm{C})$	A
B		$R(B \mid 1, A, C, A . C)$	$=R(1, A, B, C, A . C)-R(1, A, C, A . C)$	A
C		$R(C \mid 1, A, B, A . B)$	$=R(1, A, B, C, A \cdot B)-R(1, A, B, A . B)$	A
A.B	R(A.B	1,A,B,C,A.C,B.C)	$=R(1, A, B, C, A . B, A . C, B . C)-R(1, A, B, C, A . C, B . C)$	B
A.C	R(A.C	1,A,B,C,A.B,B.C)	$=R(1, A, B, C, A . B, A . C, B . C)-R(1, A, B, C, A . B, B . C)$	B
B. C	R(B.C	1,A,B,C,A.B,A.C)	$=R(1, A, B, C, A \cdot B, A \cdot C, B . C)-R(1, A, B, C, A . B, A . C)$	B
A.B.C	R(A.B.C \| 1,A	B, C,A.B,A.C,B.C)	$\begin{gathered} =R(1, A, B, C, A \cdot B, A \cdot C, B \cdot C, A \cdot B \cdot C)- \\ R(1, A, B, C, A \cdot B, A \cdot C, B . C) \end{gathered}$	C

Of these the conditional Wald statistic for the 1, B.C and A.B.C terms would be the same as the incremental Wald statistics produced using the linear model

$$
y \sim 1+A+B+C+A \cdot B+A \cdot C+B \cdot C+A \cdot B \cdot C
$$

The preceeding table includes a so-called M (marginality) code reported by ASReml when conditional Wald statistics are presented. All terms with the highest M code letter are tested conditionally on all other terms in the model, i.e. by dropping the term from the maximum model. All terms with the preceeding M code letter, are marginal to at least one term in a higher group, and so forth. For example, in the table, model term A.B has M code B because it is marginal to model term A.B.C and model term A has M code A because it is marginal to A.B, A.C and A.B.C. Model term mu (M code .) is a special case in that its test is conditional on all covariates but no factors. Following is some ASReml output from the .aov table which reports the terms in the conditional statistics.

6 water.sow	2	I	I	I	I	I	$*$	C	.
7 variety. sow	14	I	I	I	I	I	I	$*$.
8 water. variety. sow	14	I	I	I	I	I	I	I	$*$

F-inc tests the additional variation explained when the term $(*)$ is added to a model consisting of the I terms. F-con tests the additional variation explained when the term $(*)$ is added to a model consisting of the I and C/c terms. Any c terms are ignored in calculating DenDF for F -con using numerical derivatives for computational reasons. The . terms are ignored for both F-inc and F-con tests.

Consider now a nested model which might be represented symbolically by

$$
\mathrm{y} \sim 1+\text { REGION }+ \text { REGION.SITE }
$$

For this model, the incremental and conditional Wald tests will be the same. However, it is not uncommon for this model to be presented to ASReml as

$$
\mathrm{y} \sim 1+\text { REGION }+ \text { SITE }
$$

with SITE identified across REGION rather than within REGION. Then the nested structure is hidden but ASReml will still detect the structure and produce a valid conditional Wald F-statistic. This situation will be flagged in the M code field by changing the letter to lower case. Thus, in the nested model, the three M codes would be ., A and B because REGION.SITE is obviously an interaction dependent on REGION. In the second model, REGION and SITE appear to be independent factors so the initial M codes are ., A and A. However they are not independent because REGION removes additional degrees of freedom from SITE, so the M codes are changed from ., A and A to ., a and A.

We strongly recommend, if you are in any doubt about the "maximal conditional" model (MCM) for the conditional Wald F-statistic, that you consult the .aov file which spells out the "maximal conditional" model for each term. We also advise users that the aim of the conditional Wald statistic is to facilitate inference for fixed effects. It is not meant to be prescriptive nor is it foolproof for every setting.

The Wald statistics are collectively presented in a summary table in the .asr file. The basic table includes the numerator degrees of freedom $\left(\nu_{1 i}\right)$ and the incremental Wald F-statistic for each term. To this is added the conditional Wald F-statistic and the M code if ! FCON is specified. A conditional F-statistic is not reported for mu in the . asr but is in the .aov file (adjusted for covariates).

Kenward and Roger Adjustments

In moderately sized analyses, ASReml will also include the denominator degrees of freedom (DenDF, denoted by $\nu_{2 i}$, Kenward and Roger, 1997) and a probablity value if these can be computed. They will be for the conditional Wald F-statistic if it is reported. The !DDF i (see page 68) qualifier can be used to suppress the DenDF calculation (!DDF -1) or request a particular algorithmic method: !DDF 1 for numerical derivatives, !DDF 2 for algebraic derivatives. The value in the probability column (either P_inc or P_con) is computed from an $F_{\nu_{1 i}, \nu_{2 i}}$ reference distribution. An approximation is used for computational convenience when calculating the DenDF for Conditional F statistics using numerical derivatives. The DenDF reported then relates to a maximal conditional incremental model (MCIM) which, depending on the model order, may not always coincide with the maximal conditional model (MCM) under which the conditional F statistic is calculated. The MCIM model omits terms fitted after any terms ignored for the conditional test (I after . in marginality pattern). In the example above, MCIM ignores variety.sow when calculating DenDF for the test of water and ignores water.sow when calculating DenDF for the test of variety. When DenDF is not available, it is often possible, though anti-conservative to use the residual degrees of freedom for the denominator.

Kenward and Roger (1997) pursued the concept of construction of Wald-type test statistics through an adjusted variance matrix of $\hat{\boldsymbol{\tau}}$. They argued that it is useful to consider an improved estimator of the variance matrix of $\hat{\boldsymbol{\tau}}$ which has less bias and accounts for the variability in estimation of the variance parameters. There are two reasons for this. Firstly, the small sample distribution of Wald tests is simplified when the adjusted variance matrix is used. Secondly, if measures of precision are required for $\hat{\boldsymbol{\tau}}$ or effects therein, those obtained from the adjusted variance matrix will generally be preferred. Unfortunately the Wald statistics are currently computed using an unadjusted variance matrix.

Approximate stratum variances

ASReml reports approximate stratum variances and degrees of freedom for simple variance components models. For the linear mixed-effects model with variance components (setting $\sigma_{H}^{2}=1$) where $\boldsymbol{G}=\oplus_{j=1}^{q} \gamma_{j} \boldsymbol{I}_{b_{j}}$, it is often possible to consider a natural ordering of the variance component parameters including σ^{2}. Based on an idea due to Thompson (1980), ASReml computes approximate stratum degrees of freedom and stratum variances by a modified Cholesky diagonalisation of the average information matrix. That is, if \boldsymbol{F} is the average information matrix for $\boldsymbol{\sigma}$, let \boldsymbol{U} be an upper triangular matrix such that $\boldsymbol{F}=\boldsymbol{U}^{\prime} \boldsymbol{U}$.

We define

$$
\boldsymbol{U}_{c}=\boldsymbol{D}_{c} \boldsymbol{U}
$$

where \boldsymbol{D}_{c} is a diagonal matrix whose elements are given by the inverse elements of the last column of \boldsymbol{U} ie $d_{c i i}=1 / u_{i r}, i=1, \ldots, r$. The matrix \boldsymbol{U}_{c} is therefore upper triangular with the elements in the last column equal to one. If the vector $\boldsymbol{\sigma}$ is ordered in the "natural" way, with σ^{2} being the last element, then we can define the vector of so called "pseudo" stratum variance components by

$$
\boldsymbol{\xi}=\boldsymbol{U}_{c} \boldsymbol{\sigma}
$$

Thence

$$
\operatorname{var}(\boldsymbol{\xi})=\boldsymbol{D}_{c}^{2}
$$

The diagonal elements can be manipulated to produce effective stratum degrees of freedom Thompson (1980) viz

$$
\nu_{i}=2 \xi_{i}^{2} / d_{c i i}^{2}
$$

In this way the closeness to an orthogonal block structure can be assessed.

3

A guided tour

Introduction

Nebraska Intrastate Nursery (NIN) field experiment
The ASReml data file
The ASReml command file
The title line
Reading the data
The data file line
Specifying the terms in the mixed model
Tabulation
Prediction
Running the job
Description of output files
The .asr file
The .sln file
The . yht file
Tabulation, predicted values and functions of the variance components

3.1 Introduction

This chapter presents a guided tour of ASReml, from data file preparation and basic aspects of the ASReml command file, to running an ASReml job and interpreting the output files. You are encouraged to read this chapter before moving to the later chapters;

- a real data example is used in this chapter for demonstration, see below,
- the same data are also used in later chapters,
- links to the formal discussion of topics are clearly signposted by margin notes.

Note that some aspects of ASReml, in particular, pedigree files (see Chapter 9) and multivariate analysis (see Chapter 8) are only covered in later chapters.

ASReml is essentially a batch program with some optional interactive features. The typical sequence of operations when using ASReml is

- Prepare the data (typically using a spreadsheet or data base program)
- Export that data as an ASCII file (for example export it as a .csv (comma separated values) file from Excel)
- Prepare a job file with filename extension .as.
- Run the job file with ASReml
- Review the various output files
- revise the job and re run it, or
- extract pertinant results for your report.

You will need a file editor to create the command file and to view the various output files. On unix systems, vi and emacs are commonly used. Under Windows, there are several suitable program editors available such as ASRemI-W and ConText described in section 1.3.

3.2 Nebraska Intrastate Nursery (NIN) field experiment

The yield data from an advanced Nebraska Intrastate Nursery (NIN) breeding trial conducted at Alliance in 1988/89 will be used for demonstration, see Stroup et al. (1994) for details. Four replicates of 19 released cultivars, 35 experimental wheat lines and 2 additional triticale lines were laid out in a 22 row by 11
column rectangular array of plots; the varieties were allocated to the plots using a randomised complete block (RCB) design. In field trials, complete replicates are typically allocated to consecutive groups of whole columns or rows. In this trial the replicates were not allocated to groups of whole columns, but rather, overlapped columns. Table 3.1 gives the allocation of varieties to plots in field plan order with replicates 1 and 3 in ITALICS and replicates 2 and 4 in BOLD.

3.3 The ASReml data file

See Chapter 4 The standard format of an ASReml data file is to have the data arranged in for details space, TAB or comma separated columns/fields with a line for each sampling unit. The columns contain covariates, factors, response variates (traits) and weight variables in any convenient order. This is the first 30 lines of the file nin89. asd containing the data for the NIN variety trial. The data are in field order (rows within columns) and an optional heading (first line of the file) has been included to document the file. In this case there are 11 space separated data fields (variety... column) and the complete file has 224 data lines, one for each variety in each replicate.

```
variety id pid raw repl nloc yield lat long row column
LANCER 1 1 1101 585 11 4 29.25 4.3 19.2 16 1
BRULE 2 1102 631 1 4 31.55 4.3 20.4 17 1
REDLAND 3 1103 701 1 4 35.05 4.3 21.6 18 1
CODY 4 1104 602 1 4 30.1 4.3 22.8 19 1
ARAPAHOE 5 1105 661 1 4 33.05 4.3 24 20 1
NE83404 6 1106 605 1 4 30.25 4.3 25.2 21 1
NE83406 7 1107 704 1 4 35.2 4.3 26.4 22 1
NE83407 8 1108 388 1 4 19.4 8.6 1.2 1 2
CENTURA 9 1109 487 1 4 24.35 8.6 2.4 2 2
SCOUT66 10 1110 511 1 4 25.55 8.6 3.6 3 2
COLT 11 1111 502 1 4 25.1 8.6 4.8 4 2
NE83498 12 1112 492 1 4 24.6 8.6 6 5 2
NE84557 13 1113 509 1 4 25.45 8.6 7.2 6 2
NE83432 14 1114 268 1 4 13.4 8.6 8.4 7 2
NE85556 15 1115 633 1 4 31.65 8.6 9.6 8 2
NE85623 16 1116 513 1 4 25.65 8.6 10.8 9 2
CENTURAK78 17 1117 632 1 4 31.6 8.6 12 10 2
NORKAN 18 1118 446 1 4 22.3 8.6 13.2 11 2
KS831374 19 1119 684 1 4 34.2 8.6 14.4 12 2
\vdots
```

Note that in Chapter 7 these data are analysed using spatial methods of analysis, see model 3a in Section 7.3. For spatial analysis using a separable error structure
Table 3.1: Trial layout and allocation of varieties to plots in the NIN field trial

row	1	2	3	4	5	column		8	9	10	11
						6	7				
1	-	NE83407	BUCKSKIN	NE87612	VONA	NE87512	NE87408	CODY	BUCKSKIN	NE87612	KS831374
2	-	CENTURA	NE86527	NE87613	NE87463	NE83407	NE83407	NE87612	NE83406	BUCKSKIN	NE86482
3	-	SCOUT66	NE86582	NE87615	NE86507	NE87403	NORKAN	NE87457	NE87409	NE85556	NE85623
4	-	COLT	NE86606	NE87619	BUCKSKIN	NE87457	REDLAND	NE84557	NE87499	BRULE	NE86527
5	-	NE83498	NE86607	NE87627	ROUGHRIDER	NE83406	KS831374	NE83T12	CENTURA	NE86507	NE87451
6	-	NE84557	ROUGHRIDER	-	NE86527	COLT	COLT	NE86507	NE83432	ROUGHRIDER	NE87409
7	-	NE83432	VONA	CENTURA	SCOUT66	NE87522	NE86527	TAM200	NE87512	VONA	GAGE
8	-	NE85556	SIOUXLAND	NE85623	NE86509	NORKAN	VONA	NE87613	ROUGHRIDER	NE83404	NE83407
9	-	NE85623	GAGE	CODY	NE86606	NE87615	TAM107	ARAPAHOE	NE83498	CODY	NE87615
10	-	CENTURAK78	NE83T12	NE86582	NE84557	NE85556	CENTURAK78	SCOUT66	-	NE87463	ARAPAHOE
11	-	NORKAN	NE86T666	NE87408	KS831374	TAM200	NE87627	NE87403	NE86T666	NE86582	CHEYENNE
12	-	KS831374	NE87403	NE87451	GAGE	LANCOTA	NE86T666	NE85623	NE87403	NE87499	REDLAND
13	-	TAM200	NE87408	NE83432	NE87619	NE86503	NE87615	NE86509	NE87512	NORKAN	NE83432
14	-	NE86482	NE87409	CENTURAK78	NE87499	NE86482	NE86501	NE85556	NE87446	SCOUT66	NE87619
15	-	HOMESTEAD	NE87446	NE83T12	CHEYENNE	BRULE	NE87522	HOMESTEAD	CENTURA	NE87513	NE83498
16	LANCER	LANCOTA	NE87451	NE87409	NE86607	NE87612	CHEYENNE	NE83404	NE86503	NE83T12	NE87613
17	BRULE	NE86501	NE87457	NE87513	NE83498	NE87613	SIOUXLAND	NE86503	NE87408	CENTURAK78	NE86501
18	REDLAND	NE86503	NE87463	NE87627	NE83404	NE86T666	NE87451	NE86582	COLT	NE87627	TAM200
19	CODY	NE86507	NE87499	ARAPAHOE	NE87446	-	GAGE	NE87619	LANCER	NE86606	NE87522
20	ARAPAHOE	NE86509	NE87512	LANCER	SIOUXLAND	NE86607	LANCER	NE87463	NE83406	NE87457	NE84557
21	NE83404	TAM107	NE87513	TAM107	HOMESTEAD	LANCOTA	NE87446	NE86606	NE86607	NE86509	TAM107
22	NE83406	CHEYENNE	NE87522	REDLAND	NE86501	NE87513	NE86482	BRULE	SIOUXLAND	LANCOTA	HOMESTEAD

(see Chapter 2) the data file must first be augmented to specify the complete 22 row $\times 11$ column array of plots. These are the first 20 lines of the augmented data file nin89aug. asd with 242 data rows.

```
variety id pid raw repl nloc yield lat long row column
LANCER 1 NA NA 1 4 NA 4.3 1.2 1 1
LANCER 1 NA NA 1 4 NA 4.3 2.4 2 1
LANCER 1 NA NA 1 4 NA 4.3 3.6 3 1
LANCER 1 NA NA 1 4 NA 4.3 4.8 4 1
LANCER 1 NA NA 1 4 NA 4.3 6 5 1
LANCER 1 NA NA 1 4 NA 4.3 7.2 6 1
LANCER 1 NA NA 1 4 NA 4.3 8.4 7 1
LANCER 1 NA NA 1 4 NA 4.3 9.6 8 1
LANCER 1 NA NA 1 4 NA 4.3 10.8 9 1
LANCER 1 NA NA 1 4 NA 4.3 12 10 1
LANCER 1 NA NA 1 4 NA 4.3 13.2 11 1
LANCER 1 NA NA 1 4 NA 4.3 14.4 12 1
LANCER 1 NA NA 1 4 NA 4.3 15.6 13 1
LANCER 1 NA NA 1 4 NA 4.3 16.8 14 1
LANCER 1 NA NA 1 4 NA 4.3 18 15 1
LANCER 1 NA NA 2 4 NA 17.2 7.2 6 4
LANCER 1 NA NA 3 4 NA 25.8 22.8 19 6
LANCER 1 NA NA 4 4 NA 38.7 12.0 10 9
LANCER 1 1101 585 1 4 29.25 4.3 19.2 16 1
BRULE 2 1102 631 1 4 31.55 4.3 20.4 17 1
REDLAND 3 1103 701 1 4 35.05 4.3 21.6 18 1
CODY 4 1104 602 1 4 30.1 4.3 22.8 19 1
\vdots
```

optional field labels
file augmented by missing values for first 15 plots and 3 buffer plots and variety coded LANCER to complete 22×11 array

buffer plots

 between repsNote that

- the pid, raw, repl and yield data for the missing plots have all been made NA (one of the three missing value indicators in ASReml, see Section 4.2),
- variety is coded LANCER for all missing plots; one of the variety names must be used but the particular choice is arbitrary.

3.4 The ASReml command file

See Chapters 5, By convention an ASReml command file has a . as extension. The file defines 6 and 7 for de-
tails

- a title line to describe the job,
- labels for the data fields in the data file and the name of the data file,
- the linear mixed model and the variance model(s) if required,
- output options including directives for tabulation and prediction.

Below is the ASReml command file for an RCB analysis of the NIN field trial data highlighting the main sections. Note the order of the main sections.

title line data field definition \longrightarrow	```NIN Alliance trial 1989 variety !A id pid raw repl 4 nloc yield lat long row 22```
data field definition \longrightarrow data file name and qualifiers \qquad tabulate statement \longrightarrow	```column 11 nin89.asd !skip 1 tabulate yield ~ variety```
linear mixed model definition \longrightarrow predict statement \longrightarrow	yield \sim mu variety ! r repl predict variety
variance model specification \longrightarrow	```0 0 1 repl 1 repl O IDV 0.1```

The title line

The first non-blank line in an ASReml command file is taken as the title for the job and is used to identify the analysis for future reference.

```
NIN Alliance trial }198
variety !A
id
\vdots
```


Reading the data

The data fields are defined before the data file name is specified. Field definitions must be given for all fields in the data file and in the order in which they appear in the data file. Data field definitions must be indented. In this case there are 11 data fields (variety ... column) in nin89. asd, see Section 3.3.

The ! A after variety tells ASReml that the first field is alphanumeric and the 4 after repl tells ASReml that the field called repl (the fifth field read) is a numeric factor with 4 lev-

```
NIN Alliance trial }198
variety !A
id
pid
raw
repl 4
nloc
yield
lat
long
row 22
column 11
nin89.asd !skip 1
```

els. Similarly for row and column. The other
data fields include variates (yield) and various other variables.

The data file line

The data file name is specified immediately after the last data field definition. Data file qualifiers that relate to data input and output are also placed on this line if they are required.
See Section 5.7 In this example, ! skip 1 tells ASReml to read the data from nin89. asd but to ignore the first line in this file, the line containing the field labels.

See Section 5.8 The data file line can also contain qualifiers that control other aspects of the analysis. These qualifiers are presented in Section 5.8.

```
NIN Alliance trial }198
variety !A
id
pid
row 22
column 11
nin89.asd !skip 1
tabulate yield ~ variety
yield ~ mu variety !r repl
predict variety
0 0 1
repl 1
repl 0 IDV 0.1
```


Tabulation

See Chapter 10 Tabulate statements provide a simple way of exploring the structure of a data file. They appear immediately before (or after) the model line. In this case the 56 simple variety means for yield are formed and written to a .tab output file. See Chapter 10 for a discussion of tabulation.

```
\
nin89.asd !skip 1
tabulate yield ~ variety
yield ~ mu variety !r repl
predict variety
```


Specifying the terms in the mixed model

See Chapter 6 The linear mixed model is specified as a list of model terms and qualifiers. All elements must be space separated. ASReml accommodates a wide range of analyses. See Section 2.1 for a brief discussion and general algebraic formulation of the linear mixed model. The model specified here for the NIN data is a simple random effects RCB model including fixed variety effects and random replicate effects. The reserved word mu fits a constant term (inter-

```
NIN Alliance trial }198
variety !A
column 11
nin89.asd !skip 1
tabulate yield ~ variety
yield ~ mu variety !r repl
predict variety
0 0 1
repl 1
repl 0 IDV 0.1
```

cept), variety fits a fixed variety effect and repl fits a random replicate effect. The ! r qualifier tells ASReml to fit the terms that appear after this qualifier as random effects.

Prediction

See Chapter 10 Prediction statements appear after the model statement and before any variance structure lines. In this case the 56 variety means for yield would be formed and returned in the .pvs output file. See Chapter 10 for a detailed discussion of prediction in ASReml.

Variance structures

The last three lines are included for expository purposes and are not actually needed for
See Chapter 7 this analysis. An extensive range of variance structures can be fitted in ASReml. See Chapter 7 for a lengthy discussion of variance modelling in ASReml. In this case independent and identically distributed random replicate effects are specified using the identifier IDV in a G structure. G structures are described in Section 2.1 and the list of available variance

```
NIN Alliance trial }198
variety !A
column 11
nin89.asd !skip 1
tabulate yield ~ variety
yield ~ mu variety !r repl
predict variety
0 0 1
repl 1
repl 0 IDV 0.1
```

```
NIN Alliance trial }198
variety !A
column 11
nin89.asd !skip 1
tabulate yield ~ variety
yield ~ mu variety !r repl
predict variety
0 0 1
repl 1
repl 0 IDV 0.1
``` structures/models is presented in Table 7.3. Since IDV is the default variance structure for random effects, the same analysis would be performed if these lines were omitted.

\subsection*{3.5 Running the job}

See Chapter 12 An ASReml job is often run from a command line. The basic command to run an ASReml job is normally
asreml basename[.as]
where basename[.as] is the name of the command file. For example, the com-
mand to run nin89.as is
```

asreml nin89.as

```

However, if the path to ASReml is not specified in your system's Path environment variable, a path to this program must also be given. In this case the command to run the ASReml job in a PC/Windows environment is
[path] asreml basename[.as]
where path is typically C: \Program Files \(\backslash\) ASReml2 \(\backslash\) bin \(\backslash\) pointing to the location Make a habit of of the ASReml program. In this guide we assume the command file has a filename giving command files the .as extension

New extension .as. ASReml also recognises the filename extension .asc as an ASReml command file. When these are used, the extension (.as or .asc) may be omitted from basename. as in the command line if there is no file in the working directory with the name basename. The options and arguments that can be supplied on the command line to modify a job at run time are described in Chapter 12.

\section*{Forming a job template}

Notice that the data files nin89.asd and nin89aug.asd commenced with a line of column headings. Since these headings do not contain embedded blanks, we can use ASReml to make a template for the .as file by running ASReml with the datafile as the command argument (see Chapter 12). For example, running the command
```

asreml nin89aug.asd

```
writes a file nin89aug.as (if it does not already exist) which looks like
```

Title: nin89aug.
\#variety id pid raw rep nloc yield lat long row column
\#LANCER 1 NA NA 1 4 NA 4.3 1.2 1 1
\#LANCER 1 NA NA 1 4 NA 4.3 2.4 2 1
\#LANCER 1 NA NA 1 4 NA 4.3 3.6 3 1
\#LANCER 1 NA NA 1 4 NA 4.3 4.8 4 1
variety !A
id *
pid
raw
rep *
nloc *
yield
lat
long
row *
column *

# Check/Correct these field definitions.

nin89aug.asd !SKIP 1

```
```

column ~ mu , \# Specify fixed model
!r \# Specify random model

# 1 2 0

# column column AR1 0.1

# row row AR1 0.1

```

This is a template in that it needs editing (it has nominated an inappropriate response variable) but it displays the first few lines of the data and infers whether fields are factors or variates as follows: Missing fields and those with decimal points in the data value are taken as covariates, integer fields are taken as simple factors (*) and alphanumeric fields are taken as ! A factors.

\subsection*{3.6 Description of output files}

A series of output files are produced with each ASReml run. Running the example as above, the primary output is written to nin89. asr. This file contains a summary of the data, the iteration sequence, estimates of the variance parameters and an analysis of variance (ANOVA) table. The estimates of all the fixed and random effects are written to nin89.sln. The residuals, predicted values of the observations and the diagonal elements of the hat matrix (see Chapter 2) are returned in nin89. yht, see Section 13.3. Other files produced by this job include the .aov, .pvs, .res, .tab, .vvp and .veo files, see Section 13.4.

\section*{The .asr file}

Below is nin89.asr with pointers to the main sections. The first line gives the version of ASReml used (in square brackets) and the title of the job. The second line gives the build date for the program and indicates whether it is a 32 bit or 64bit version. The third line gives the date and time that the job was run and reports the size of the workspace. The general announcements box (outlined in asterisks) at the top of the file notifies the user of current release features. The remaining lines report a data summary, the iteration sequence, the estimated variance parameters and an ANOVA table. The final line gives the date and time that the job was completed and a statement about convergence.
```

job heading
ASReml 1.63o [01 Jun 2005] NIN alliance trial 1989
Build: j [01 Jul 2005] 32 bit
11 Jul 2005 13:55:21.504 32.00 Mbyte Windows nin89
notices
Licensed to: Arthur Gilmour

```
```

* SYNTAX change: A/B now means A A.B
*     * 
* Contact support@asreml.co.uk for licensing and support *
*********************************************************** ARG *

```
Folder: C:\data\asr\UG2\manex
 variety ! A
QUALIFIERS: !SKIP 1
data summary Reading nin89.asd FREE FORMAT skipping 1 lines
Univariate analysis of yield
Using 224 records of
Model term
U variety

Forming 61 equations: 57 dense.
Initial updates will be shrunk by factor 0.316
NOTICE: 1 singularities detected in design matrix.
iteration
sequence
\begin{tabular}{llllll}
1 LogL \(=-454.807\) & \(\mathrm{~S} 2=\) & 50.329 & 168 df & 1.000 & 0.1000 \\
2 LogL \(=-454.663\) & \(\mathrm{~S} 2=\) & 50.120 & 168 df & 1.000 & 0.1173 \\
3 LogL \(=-454.532\) & \(\mathrm{~S} 2=\) & 49.868 & 168 df & 1.000 & 0.1463 \\
4 LogL \(=-454.472\) & \(\mathrm{~S} 2=\) & 49.637 & 168 df & 1.000 & 0.1866 \\
5 LogL \(=-454.469\) & \(\mathrm{~S} 2=\) & 49.585 & 168 df & 1.000 & 0.1986 \\
6 LogL=-454.469 & \(\mathrm{S} 2=\) & 49.582 & 168 df & 1.000 & 0.1993 \\
7 LogL=-454.469 & \(\mathrm{S} 2=\) & 49.582 & 168 df & 1.000 & 0.1993 \\
Final parameter values & & & 1.0000 & 0.19932
\end{tabular}

\section*{The .sln file}

The following is an extract from nin89.sln containing the estimated variety effects, intercept and random replicate effects in this order (column 3) with standard errors (column 4). Note that the variety effects are returned in the order of their first appearance in the data file, see replicate 1 in Table 3.1.
\begin{tabular}{llrr}
variety & LANCER & 0.000 & 0.000 \\
variety & BRULE & -2.487 & 4.979 \\
variety & REDLAND & 1.938 & 4.979 \\
variety & CODY & -7.350 & 4.979 \\
variety & ARAPAHOE & 0.8750 & 4.979 \\
variety & NE83404 & -1.175 & 4.979 \\
variety & NE83406 & -4.287 & 4.979 \\
variety & NE83407 & -5.875 & 4.979 \\
variety & CENTURA & -6.912 & 4.979 \\
variety & SCOUT66 & -1.037 & 4.979 \\
variety & COLT & -1.562 & 4.979 \\
variety & NE83498 & 1.563 & 4.979 \\
variety & NE84557 & -8.037 & 4.979 \\
variety & NE83432 & -8.837 & 4.979 \\
\(\vdots\) & & & \\
variety & NE87615 & & -2.875 \\
variety & NE87619 & & 2.700 \\
variety & NE87627 & 1 & 4.9 .979 \\
mu & & 28.56 & 4.979 \\
repl & & 1.880 & 1.755 \\
repl & & 2.843 & 1.755
\end{tabular}
\begin{tabular}{llll}
repl & 3 & -0.8713 & 1.755 \\
repl & 4 & -3.852 & 1.755
\end{tabular}

\section*{The .yht file}

The following is an extract from nin89.yht containing the predicted values of the observations (column 2), the residuals (column 3) and the diagonal elements of the hat matrix. This final column can be used in tests involving the residuals, see Section 2.5 under Diagnostics.
\begin{tabular}{rrrr}
Record & Yhat & Residual & Hat \\
1 & 30.442 & -1.192 & 13.01 \\
2 & 27.955 & 3.595 & 13.01 \\
3 & 32.380 & 2.670 & 13.01 \\
4 & 23.092 & 7.008 & 13.01 \\
5 & 31.317 & 1.733 & 13.01 \\
6 & 29.267 & 0.9829 & 13.01 \\
7 & 26.155 & 9.045 & 13.01 \\
8 & 24.567 & -5.167 & 13.01 \\
9 & 23.530 & 0.8204 & 13.01 \\
& & & \\
222 & 16.673 & 9.877 & 13.01 \\
223 & 24.548 & 1.052 & 13.01 \\
224 & 23.786 & 3.114 & 13.01
\end{tabular}

\subsection*{3.7 Tabulation, predicted values and functions of the variance components}

It may take several runs of ASReml to determine an appropriate model for the data, that is, the fixed and random effects that are important. During this process you may wish to explore the data by simple tabulation. Having identified an appropriate model, you may then wish to form predicted values or functions of the variance components. The facilities in ASReml to form predicted values and functions of the variance components are described in Chapters 10 and 11 respectively. Our example only includes tabulation and prediction.

The statement
```

tabulate yield ~ variety

```
in nin89. as results in nin89.tab as follows:
NIN alliance trial \(1989 \quad 11\) Jul 2005 13:55:21
```

Simple tabulation of yield

```
\begin{tabular}{ll}
variety & \\
LANCER & 28.56 \\
BRULE & 26.07 \\
REDLAND & 30.50 \\
CODY & 21.21 \\
ARAPAHOE & 29.44 \\
NE83404 & 27.39 \\
NE83406 & 24.28 \\
NE83407 & 22.69 \\
CENTURA & 21.65 \\
SCOUT66 & 27.52 \\
COLT & 27.00 \\
& \\
NE87522 & 25.00 \\
NE87612 & 21.80 \\
NE87613 & 29.40 \\
NE87615 & 25.69 \\
NE87619 & 31.26 \\
NE87627 & 23.23
\end{tabular}

The
```

predict variety

```
statement after the model statement in nin89.as results in the nin89.pvs file displayed below (some output omitted) containing the 56 predicted variety means, also in the order in which they first appear in the data file (column 2), together with standard errors (column 3). An average standard error of difference among the predicted variety means is displayed immediately after the list of predicted values. As in the .asr file, date, time and trial information are given the title line. The Ecode for each prediction (column 4) is usually E indicating the prediction is of an estimable function. Predictions of non-estimable functions are usually not printed, see Chapter 10.

\title{
Data file preparation
}

\section*{Introduction}

The data file

Free format
Fixed format
Preparing data files in Excel
Binary format

\subsection*{4.1 Introduction}

The first step in an ASReml analysis is to prepare the data file. Data file preparation is described in this chapter using the NIN example of Chapter 3 for demonstration. The first 25 lines of the data file are as follows:
```

variety id pid raw repl nloc yield lat long row column
BRULE 2 1102 631 1 4 31.55 4.3 20.4 17 1
REDLAND 3 1103 701 1 4 35.05 4.3 21.6 18 1
CODY 4 1104 602 1 4 30.1 4.3 22.8 19 1
ARAPAHOE 5 1105 661 1 4 33.05 4.3 24 20 1
NE83404 6 1106 605 1 4 30.25 4.3 25.2 21 1
NE83406 7 1107 704 1 4 35.2 4.3 26.4 22 1
NE83407 8 1108 388 1 4 19.4 8.6 1.2 1 2
CENTURA 9 1109 487 1 4 24.35 8.6 2.4 2 2
SCOUT66 10 1110 511 1 4 25.55 8.6 3.6 3 2
COLT 11 1111 502 1 4 25.1 8.6 4.8 4 2
NE83498 12 1112 492 1 4 24.6 8.6 6 5 2
NE84557 13 1113 509 1 4 25.45 8.6 7.2 6 2
NE83432 14 1114 268 1 4 13.4 8.6 8.4 7 2
NE85556 15 1115 633 1 4 31.65 8.6 9.6 8 2
NE85623 16 1116 513 1 4 25.65 8.6 10.8 9 2
CENTURK78 17 1117 632 1 4 31.6 8.6 12 10 2
NORKAN 18 1118 446 1 4 22.3 8.6 13.2 11 2
KS831374 19 1119 684 1 4 34.2 8.6 14.4 12 2
TAM200 20 1120 422 1 4 21.1 8.6 15.6 13 2
NE86482 21 1121 560 1 4 28 8.6 16.8 14 2
HOMESTEAD 22 1122 566 1 4 28.3 8.6 18 15 2
LANCOTA 23 1123 514 1 4 25.7 8.6 19.2 16 2
NE86501 24 1124 635 1 4 31.75 8.6 20.4 17 2
NE86503 25 1125 840 1 4 42 8.6 21.6 18 2
:

```

\subsection*{4.2 The data file}

The standard format of an ASReml data file is to have the data arranged in columns/fields with a single line for each sampling unit. The columns contain variates and covariates (numeric), factors (alphanumeric), traits (response variables) and weight variables in any order that is convenient to the user. The data file may be free format, fixed format or a binary file.

\section*{Free format data files}

The data are read free format (Space, COMmA or tab separated) unless the file name has extension .bin for real binary, or .dbl for double precision binary (see
below). Important points to note are as follows:
- files prepared in Excel must be converted to comma or tab-delimited form.
- blank lines are ignored,
- column headings, field labels or comments may be present at the top of the file provided that the !skip qualifier (Table 5.2) is used to skip over them,
- NA,* and . are treated as coding for missing values in free format data files;
- if missing values are coded with a unique data value (for example, 0 or -9), use \(!\mathrm{M}\) to flag them as missing or ! D to drop the data record containing them (see Table 5.1),
- comma delimited files whose file name ends in .csv or for which the !CSV qualifier is set recognise empty fields as missing values,
- a line beginning with a comma implies a preceding missing value,
- consecutive commas imply a missing value,
- a line ending with a comma implies a trailing missing value,
- if the filename does not end in .csv or the ! CSV qualifier is not set, commas are treated as white space,
- characters following \# on a line are ignored so this character may not be used in alphanumeric fields,
- blank spaces, tabs and commas must not be used (embedded) in alphanumeric fields unless the label is enclosed in quotes, for example, the name Willow Creek would need to be appear in the data file as 'Willow Creek' to avoid error,
- the \(\$\) symbol must not be used in the data file,
- alphanumeric fields have a default size of 16 characters. Use the !LL qualifier to extend the size of factor labels stored.
- extra data fields on a line are ignored,
- if there are fewer data items on a line than ASReml expects the remainder are taken from the following line(s) except in .csv files were they are taken as missing. If you end up with half the number of records you expected, this is probably the reason,
- all lines beginning with ! followed by a blank are copied to the .asr file as comments for the output; their contents are ignored,
- a data file line may not exceed 2000 characters; if the data fields will not fit in 2000 characters, put some on the next line.

\section*{Fixed format data files}

The format must be supplied with the !FORMAT qualifier which is described in (Table 5.5). However, if all fields are present and are separated, the file can be read free format.

\section*{Preparing data files in Excel}

Many users find it convenient to prepare their data in Excel or Access. However, the data must be exported from these programs into either .csv (Comma separated values) or .txt (TAB separated values) form for ASReml to read it. ASReml can convert an .xls file to a .csv file. When ASReml is invoked with an .xls file as the filename argument and there is no .csv file or .as with the same basename, it exports the first sheet as a .csv file and then generates a template .as command file from any column headings it finds (see page 178). It will also convert a Genstat .gsh spreadsheet file to .csv format. The data extracted from the .xls file are labels, numerical values and the results from formulae. Empty rows at the start and end of a block are trimmed, but empty rows in the middle of a block are kept. Empty columns are ignored. A single row of labels as the first non-empty row in the block will be taken as column names. Empty cells in this row will have default names C1, C2 etc. assigned. Missing values are commonly represented in ASReml data files by NA, * or .. ASReml will also recognise empty fields as missing values in .csv (.xls) files.

\section*{Binary format data files}

Conventions for binary files are as follows:
- binary files are read as unformatted Fortran binary in single precision if the filename has a .bin or .BIN extension,
- Fortran binary data files are read in double precision if the filename has a .dbl or .DBL extension,
- ASReml recognises the value -1 e 37 as a missing value in binary files,
- Fortran binary in the above means all real (.bin) or all double precision (.dbl) variables; mixed types, that is, integer and alphabetic binary representation of variables is not allowed in binary files,
- binary files can only be used in conjunction with a pedigree file if the pedigree fields are coded in the binary file so that they correspond with the pedigree file (this can be done using the !SAVE option in ASReml to form the binary file, see Table 5.5), or the identifiers are whole numbers less than \(9,999,999\) and the ! RECODE qualifier is specified (see Table 5.5).

\section*{5 \\ Command file: Reading the data}

\section*{Introduction \\ Important rules}

Title line
Specifying and reading the data
Data field definition syntax

Transforming the data
Transformation syntax
Other rules and examples
Special note on covariates
Other examples
Datafile line
Datafile line syntax
Datafile qualifiers
Job control qualifiers

\subsection*{5.1 Introduction}

In the code box to the right is the ASReml command file nin89a.as for a spatial analysis of the Nebraska Intrastate Nursery (NIN) field experiment introduced Chapter 3. The lines that are highlighted in bold/blue type relate to reading in the data. In this chapter we use this example to discuss reading in the data in detail.
```

NIN Alliance Trial 1989
variety !A
id
pid
raw
repl 4
nloc
yield
lat
long
row 22
column 11
nin89aug.asd !skip 1
yield ~ mu variety
12
11 column AR1 . }42
22 row AR1 . }90

```

\subsection*{5.2 Important rules}

In the ASReml command file
- all characters following a \# symbol on a line are ignored,
- all blank lines are ignored,
- lines beginning with ! followed by a blank are copied to the .asr file as comments for the output,
- a blank is the usual separator; TAB is also a separator,

New - maximum line length is 2000 characters,
- a comma as the last character on the line is used to indicate that the current list is continued on the next line; a comma is not needed when ASReml knows how many values to read,
- reserved words used in specifying the linear model (Table 6.1) are case sensitive; they need to be typed exactly as defined: they may not be abbreviated.
- a qualifier is a particular letter sequence beginning with an ! which sets an option or changes some aspect of ASReml;
- some qualifiers require arguments,
- qualifiers must appear on the correct line,
- qualifier identifiers are not case sensitive,
- qualifier identifiers may be truncated to 3 characters.

\subsection*{5.3 Title line}

The first 40 characters of the first nonblank line in an ASReml command file are taken as a title for the job. Use this to identify the analysis for future reference.
```

NIN Alliance Trial }198
variety !A
id
pid
:

```

\subsection*{5.4 Specifying and reading the data}

Typically, a data record consists of all the information pertaining to an experimental unit (plot, animal, assessment). We distinguish the fields which exist in the data file and are read into ASReml from the fields that are saved in ASReml and are available for analysis. They coincide only if no transformations are performed. Similarly, we sometimes discard some records so that there are fewer records available for analysis than appear in the data file.

The data fields to be saved for analysis are defined immediately after the job title. The definitions control how each field in the data file is handled as it is read into ASReml. ASReml deduces how many of them are read from the data file from the associated transformation information (override with the !READ qualifier described in Table 5.5). No more than 1000 variables may be read or formed.

\section*{Data field definitions}
- should be given for all fields in the data file; fields (on the end of a data line) without a field definition are ignored; if there are not enough data fields on a data line, the remainder are taken from the next line(s),
- must be presented in the order in which they appear in the data file,

Important - must be indented one or more spaces,
- can appear with other definitions on the same line,
- Data fields can be transformed (see below):
```

NIN Alliance Trial }198
variety !A
id
pid
raw
repl 4
nloc
yield
lat
long
row 22
column 11
nin89aug.asd !skip 1
yield ~ mu variety
:

```
- transformation qualifiers should be listed after the data field labels for the fields being modified/created.
- additional data fields can be created by transformation qualifiers.

\section*{Data field definition syntax}

Data field definitions appear in the ASReml command file in the form

SPACE label [field_type] [transformations]
- SPACE
- is a required space
- label
- is an alphanumeric string to identify the field,
- has a maximum of 31 characters of which only 20 are printed; the remaining characters are not displayed,
- must begin with a letter,
- must not contain the special characters ., \({ }^{*},:, /,!, \#,-\) or (,
- reserved words (Table 6.1 and Table 7.3) must not be used,
- field_type defines how a variable is interpreted if specified in the linear model,
- for a variate, leave field_type blank or specify 1,
- for a model factor, various qualifiers are required depending on the form of the factor coding where \(n\) is the number of levels of the factor and \(s\) is a list of labels to be assigned to the levels:
* or \(n \quad\) is used when the data field has values \(1 \ldots n\) directly coding for the factor unless the levels are to be labelled (see !L),
\(!\mathrm{A}[n] \quad\) is required if the data field is alphanumeric,
! I \([n]\) is required if the data is numeric but not \(1 \ldots n\); II must be followed by \(n\) if more than 1000 codes are present,
! L \(s \quad\) is used when the data field is numeric with values \(1 . . . n\) and labels are to be assigned to the \(n\) levels, for example
Sex !L Male Female If there are many labels, they may be written over several lines by using a trailing comma to indicate continuation of the list.
! P indicates the special case of a pedigree factor; ASReml will determine the levels from the pedigree file, see Section 9.3,

A warning is printed if the nominated value for \(n\) does not agree with the actual number of levels found in the data and if the nominated value is too small the correct value is used.
- !DATE specifies the field has one of the date formats \(d d / m m / y y, d d / m m / c c y y\), \(d d\)-Mon-yy, \(d d\)-Mon-ccyy and is to be converted into a Julian day where \(d d\) is a 1 or 2 digit day of the month, \(m m\) is a 1 or 2 digit month of the year, Mon is
a three letter month name (Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec), yy is the year within the century (00 to 99), cc is the century (19 or 20). The separators '/' and '-' must be present as indicated. The dates are converted to days starting 1 Jan 1900 . When the century is not specified, \(y y\) of 0-32 is taken as 2000-2032, 33-99 taken as 1933-1999.
- !DMY specifies the field has one of the date formats \(d d / \mathrm{mm} / \mathrm{yy}\) or \(\mathrm{dd} / \mathrm{mm} / \mathrm{cc} y y\) and is to be converted into a Julian day.
- ! MDY specifies the field has one of the date formats \(m m / d d / y y\) or \(m m / d d / c c y y\) and is to be converted into a Julian day.
- !TIME specifies the field has the time format hh:mm:ss. and is to be converted to seconds past midnight where \(h h\) is hours (0 to 23), \(m m\) is minutes \((0-59)\) and \(s s\) is seconds (0 to 59). The separator ' \(:\) ' must be present.
- for a group of \(m\) variates
! \(\mathrm{G} m\) is used when \(m\) contiguous data fields are to be treated as a factor or group of variates. For example longhand shorthand
!
X1 x2 X3 X4 X5 y X !G 5 y
data.dat data.dat
y \(\sim\) mu X1 X2 X3 X4 X5 \(\mathrm{y} \sim \mathrm{mu} X\)
so that the 5 variates can be referred to in the model as X by using X ! G 5
- transformations
- see below

\section*{Storage of alphabetic factor labels}

Space is allocated dynamically for the storage of alphabetic factor labels with a default allocation being 2000 labels of 16 characters long. If there are large ! A factors (so that the total across all factors will exceed 2000), you must specify the anticipated size (within say \(5 \%\)). If some labels are longer then 16 characters and the extra characters are significant, you must lengthen the space for each label by specifying !LL \(c\) e.g. cross !A 2300 !LL 48
indicates the factor cross has about 2300 levels and needs 48 characters to hold the level names although only the first 20 characters of the names are ever printed.
!PRUNE on a field definition line means that if fewer levels are actually present
in the factor than were declared, ASReml will reduce the factor size to the actual number of levels. Use !PRUNALL for this action to be taken on the current and subsequent factors up to (but not including) a factor with the ! PRUNEOFF qualifier. The user may overestimate the size for large ALPHA and INTEGER coded factors so that ASReml reserves enough space for the list. Using ! PRUNE will mean the extra (undefined) levels will not appear in the .sln file. Since it is sometimes necessary that factors not be pruned in this way, for example in pedigree/GIV factors, pruning is only done if requested.

\section*{Reordering the factor levels}

New !SORT declared after ! A or ! I on a field definition line will cause ASReml to sort the levels so that labels occur in alphabetic/numeric order for the analysis. By default, ASReml orders factor levels in the order they appear in the data so that for example, the user cannot tell whether SEX will be coded 1=Male, 2=Female or \(1=\) Female, \(2=\) Male without looking at the data file to see whether Male or Female appears first in the SEX field. With the !SORT qualifier, the coding will be \(1=\) Female, \(2=\) Male regardless of which appears first in the file.
!SORTALL means that the levels for the current and subsequent factors are to be sorted.

\section*{Skipping input fields}
!SKIP \(f\) will skip \(f\) data fields BEFORE reading this field. It is particularly useful in large files with alphabetic fields which are not needed as it saves ASReml the time required to classify the alphabetic labels. For example

Sire ! I !skip 1
would skip the field before the field which is read as 'Sire'.

\subsection*{5.5 Transforming the data}

Transformation is the process of modifying the data (for example, dividing all of the data values in a field by 10), deriving new forms of the data for analysis (for example, summing the data in two fields) or creating temporary data (for example, a test variable used immediately to discard some records from analysis). Occasional users may find it easier to use a spreadsheet to calculate derived variables than to modify variables using ASReml transformations.

Transformation qualifiers are listed after data field labels. They define an operation (e.g. +), often involving an argument (a constant or another variable), which is performed on a target variable. The target is usually implicit but can be changed to a new variable. Note that
- there may be up to 1000 variables and these are internally labeled \(\mathrm{V} 1, \mathrm{~V} 2 \ldots\) V1000,
- values from the data file are read into the leading variables,
- alpha (!A), integer (!I), pedigree (!P) and date (!DATE) fields are converted to real numbers (level codes) as they are read and before any transformations are applied,
- transformations may be applied to any variable (since every variable is numeric), but it may not be sensible to change factor level codes,
- transformations are performed in the order of appearance for each record in turn,
- after completing the transformations for each record, the values in the record for variables associated with a label are held for analysis, (or the record (all values) is discarded; see ! D transformation and Section 6.10),

Thus variables form three classes: those read from the data file (possibly modified, normally labelled and available for subsequent use in analysis), those created and labelled (available for subsequent use in the analysis) and those created but not labelled (intermediate calculations not required for subsequent analysis).

The first variables contain the values read from the data file for each record. The number of variables read can be explicitly set using the !READ qualifier described in Table 5.5. Otherwise ASReml reads values from the data file for each variable/factor defined unless the variable/factor and all subsequent labelled variables are created (using transformations). For example,

A B C !=A !-B
reads two fields (A and B), and constructs C as A-B. All three are available for analysis.

Variables that have an explicit label, may be referenced by their explicit label or their internal label. Therefore, to avoid confusion, do not use explicit labels of the form \(V i\), where \(i\) is a number, for variables to be referred to in a transformation. \(\mathrm{V} i\) always refers to field/variable \(i\) in a transformation statement.

Variables that are not initialized from the data file, are initialized to missing value for the first record, and otherwise, to the values from the preceding record
(after transformation). Thus
A B LagA !=V4 !V4=A
reads two fields (A and B), and constructs LagA as the value of A from the previous record by extracting a value for LagA from working variable V4 before loading V4 with the current value of \(A\).

\section*{Transformation syntax}

Transformation qualifiers have one of six forms, namely
\begin{tabular}{|c|c|}
\hline ! operator & to perform an operation on the current field, for example, ! ABS to take absolute values, \\
\hline ! operator value & to perform an operation involving an argument on the current field, for example, !+3 to add 3 to all elements in the field, \\
\hline ! operator V field & to perform an operation on the current field using the data in another field, for example, ! -V2 to subtract field 2 from the current field \\
\hline ! V target & to reset the focus for subsequent transformations to field number target, \\
\hline \(!\mathrm{V}\) target = value & to change all of the data in a target field to a given value, \\
\hline l V arget \(=\mathrm{V}\) field & to overwrite the data in a target field by the data values of another field; a special case is when field is 0 instructing ASReml to put the record number into the target field. \\
\hline
\end{tabular}
- ! flags the presence of the transformation
- operator is one of the symbols defined in Table 5.1,
- value is the argument required by the transformation,
- V is the literal character and is followed by the number (target or field) of a data field; the data field is used or modified depending on the context,
- Vfield may be replaced by the label of the field if it already has a label,
- in the first three forms the operation is performed on the current field; this will be the field associated with the label unless the focus has been reset by specifying a new target in a preceding transformation,
- the next three forms change the focus for subsequent transformations to the field target,
- in the last two forms a value is assigned to the target field. For example, ... !V22=V11 ... copies (existing) field 11 into field 22. Such a statement would typically be followed by more transformations. If there are fewer than 22 variables labelled then V22 is used in the transformation stage but not kept for analysis.

Table 5.1: List of transformation qualifiers and their actions with examples
\begin{tabular}{|c|c|c|c|}
\hline qualifier & argument & action & examples \\
\hline \[
\begin{aligned}
& !=,!+,!-,!*, \\
& !/
\end{aligned}
\] & \(v\) & usual arithmetic meaning; note that, \(0 / 0\) gives 0 but \(v / 0\) gives a missing value where \(v\) is not 0 . & \[
\begin{aligned}
& \text { yield !/10 } \\
& \text { half !=0.5 } \\
& \text { zero !=0. }
\end{aligned}
\] \\
\hline ! & \(v\) & raises the data (which must be positive) to the power \(v\). & \begin{tabular}{l}
yield \\
SQRyld !=yield ! 0.5
\end{tabular} \\
\hline \(!^{\sim}\) & 0 & takes natural logarithms of the data (which must be positive). & \begin{tabular}{l}
yield \\
LNyield !=yield !~0
\end{tabular} \\
\hline ! & -1 & takes reciprocal of data (data must be positive). & \begin{tabular}{l}
yield \\
INVyield !=yield !~-1
\end{tabular} \\
\hline \[
\begin{array}{ll}
!>, & !<, \\
!==, & !<= \\
!>= &
\end{array}
\] & \(v\) & logical operators forming 1 if true, 0 if false. & \[
\begin{aligned}
& \text { yield } \\
& \text { high !=yield !>10 }
\end{aligned}
\] \\
\hline ! ABS & & takes absolute values - no argument required. & \begin{tabular}{l}
yield \\
ABSyield !=yield !ABS
\end{tabular} \\
\hline ! ARCSIN & \(v\) & forms an ArcSin transformation using the sample size specified in the argument, a number or another field. In the side example, for two existing fields Germ and Total containing counts, we form the ArcSin for their ratio (ASG) by copying the Germ field and applying the ArcSin transformation using the Total field as sample size. & \begin{tabular}{l}
Germ Total \\
ASG !=Germ !ARCSIN Total
\end{tabular} \\
\hline !COS, !SIN & \(s\) & takes cosine and sine of the data variable with period \(s\) having default \(2 \pi\); omit \(s\) if data is in radians, set \(s\) to 360 if data is in degrees. & \begin{tabular}{l}
Day \\
CosDay !=Day ! COS 365
\end{tabular} \\
\hline ! \(\mathrm{D}, \mathrm{l}\) (\({ }^{\text {c }}\), & \(v\) & \(!\mathrm{D} v\) discards records which have \(v\) or & yield ! \(\mathrm{D}<=0\) \\
\hline \(!\mathrm{D}<,!\mathrm{D}<=\), & \(v\) & 'missing value' in the field; if !D is used & yield !D<1 ! \({ }^{\text {l }} 100\) \\
\hline ! \(\mathrm{D}>\), ! \(\mathrm{D}>=\) & \(v\) & after ! A or ! I, \(v\) should refer to the encoded factor level rather than the value in the data file (see also Section 4.2). Use !D * to discard just those records with a missing value in the field. & InitialWt !D * \\
\hline
\end{tabular}

List of transformation qualifiers and their actions with examples
\begin{tabular}{|c|c|c|c|}
\hline qualifier & argument & action & examples \\
\hline ! DOM & \(f\) & copies and converts additive marker covariables \((-1,0,1)\) to dominance marker covariables (see below). & ChrAdom ! DOM ChrAadd \\
\hline ! EXP & & takes antilog base \(e\) - no argument required. & Rate ! EXP \\
\hline ! Jddm, ! Jmmd ! Jyyd & & \begin{tabular}{l}
! Jddm converts a number representing a date in the form \(d d m m c c y y, d d m m y y\) or \(d d m m\) into days. ! Jmmd converts a date in the form ccyymmdd, yymmdd or mmdd into days. !Jyyd converts a date in the form ccyyddd or \(y y d d d\) into days. These calculate the number of days since December 311900 and are valid for dates from January 11900 to December 31 2099; note that if \(c c\) is omitted it is taken as 19 if \(y y>\) 32 and 20 if \(y y<33\), \\
the date must be entirely numeric: characters such as / may not be present (but see !DATE.
\end{tabular} & \\
\hline ! M, ! M \({ }^{\text {l }}\), & \(v\) & \(!\mathrm{M} v\) converts data values of \(v\) to miss- & yield ! M-9 \\
\hline \(!M<!M<=\) & \(v\) & ing; if ! M is used after ! A or ! I, v should & yield ! M \(<=0\) ! \(M>100\) \\
\hline ! \(\mathrm{M}>\) ! \(\mathrm{M}>=\) & \(v\) & refer to the encoded factor level rather than the value in the data file (see also Section 4.2). & \\
\hline \[
\begin{aligned}
& \text { !MAX, !MIN, } \\
& \text { !MOD }
\end{aligned}
\] & \(v\) & the maximum, minimum and modulus of the field values and the value \(v\). & yield !MAX 9 \\
\hline ! MM & \(s\) & assigns Haldane map positions (\(s\)) to marker variables and imputes missing values to the markers (see below). & ChrAadd ! G 10 ! MM 1. \\
\hline ! NA & \(v\) & replaces any missing values in the variate with the value \(v\). & Rate ! NA 0 \\
\hline ! NORMAL & \(v\) & replaces the variate with normal random variables having variance \(v\). & Ndat !=0 ! Normal 4.5 is equivalent to Ndat ! =Normal 4.5 \\
\hline ! REPLACE & o \(n\) & \begin{tabular}{l}
replaces data values \(o\) with \(n\) in the current variable. I.e. \\
IF (DataValue.EQ.o) DataValue=n
\end{tabular} & Rate ! REPLACE -9 0 \\
\hline ! RESCALE & \(o s\) & rescales the column(s) in the current variable (! G group of variables) using \(\boldsymbol{Y}=(\boldsymbol{Y}+o) * s\) & Rate !RESCALE -10 0.1 \\
\hline
\end{tabular}

List of transformation qualifiers and their actions with examples
\begin{tabular}{|c|c|c|c|}
\hline qualifier & argument & action & examples \\
\hline !SEED & \(v\) & sets the seed for the random number generator. & ... ! SEED 848586 \\
\hline !SET & vlist & for vlist, a list of \(n\) values, the data values \(1 \ldots n\) are replaced by the corresponding element from vlist; data values that are \(<1\) or \(>n\) are replaced by zero. vlist may run over several lines provided each incomplete line ends with a comma, i.e., a comma is used as a continuation symbol (see Other examples below). & \begin{tabular}{l}
treat ! L C A B \\
CvR !=treat ! SET 1-1 -1
\[
\begin{aligned}
& \text { group !=treat !SET 1, } \\
& 22334
\end{aligned}
\]
\end{tabular} \\
\hline !SETN & \(v n\) & !SETN \(v n\) replaces data values \(1: n\) with normal random variables having variance \(v\). Data values outside the range \(1 \cdots n\) are set to 0 . & Anorm !=A !SETN 2.510 \\
\hline !SETU & \(v n\) & replaces data values \(1: n\) with uniform random variables having range \(0: v\). Data values outside the range \(1 \cdots n\) are set to 0 . & Aeff !=A !SETU 510 \\
\hline ! SUB & vlist & replaces data values \(=v_{i}\) with their index \(i\) where vlist is a vector of \(n\) values. Data values not found in vlist are set to 0 . vlist may run over several lines if necessary provided each incomplete line ends with a comma. ASReml allows for a small rounding error when matching. It may not distinguish properly if values in vlist only differ in the sixth decimal place (see Other examples below). & year 3 !SUB 666768 \\
\hline !SEQ & & replaces the data values with a sequential number starting at 1 which increments whenever the data value changes between successive records; the current field is presumed to define a factor and the number of levels in the new factor is set to the number of levels identified in this sequential process (see Other examples below). Missing values remain missing. & plot !=V3 ! SEQ \\
\hline !UNIFORM & \(v\) & replaces the variate with uniform random variables having range \(0: v\). & Udat !=0. !Uniform 4.5 is equivalent to Udat !=Uniform 4.5 \\
\hline
\end{tabular}

List of transformation qualifiers and their actions with examples
\begin{tabular}{|c|c|c|c|}
\hline qualifier & argument & action & examples \\
\hline \multirow[t]{2}{*}{! Vtarget=} & value & assigns value to data field target overwriting previous contents; subsequent transformation qualifiers will operate on data field target. & \(\cdots!\mathrm{V}=2.5\) \\
\hline & Vfield & assigns the contents of data field field to data field target overwriting previous contents; subsequent transformation qualifiers will operate on data field target. If field is 0 the number of the data record is inserted. & \[
\begin{aligned}
& \ldots \text { !V10=V3 } \\
& \cdots \cdot \text { V11=block } \\
& \cdots \cdot \text { V12=V0 }
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{QTL marker transformations}
! MM \(s\) associates marker positions in the vector \(s\) (based on the Haldane mapping function) with marker variables and replaces missing values in a vector of marker states with expected values calculated using distances to non-missing flanking markers. This transformation will normally be used on a ! G \(n\) factor where the \(n\) variables are the marker states for \(n\) markers in a linkage group in map order and coded \([-1,1]\) (backcross) or \([-1,0,1]\) (F2 design). \(s\) (length \(n+1\)) should be the \(n\) marker positions relative to a left telomere position of zero, and an extra value being the length of the linkage group (the position of the right telomere). The length (right telomere) may be omitted in which case the last marker is taken as the end of the linkage group. The positions may be given in Morgans or centiMorgans (if the length is greater than 10, it will be divided by 100 to convert to Morgans).

The recombination rate between markers at \(s_{L}\) and \(s_{R}\) (L is left and R is right of some putative QTL at Q) is
\(\theta_{L R}=\left(1-e^{-2\left(s_{R}-s_{L}\right)}\right) / 2\).
Consequently, for 3 markers (L, Q,R), \(\theta_{L R}=\theta_{L Q}+\theta_{Q R}-2 \theta_{L Q} \theta_{Q R}\).
The expected value of a missing marker at Q (between L and R) depends on the marker states at L and \(\mathrm{R}: E(q \mid 1,1)=\left(1-\theta_{L Q}-\theta_{Q R}\right) /\left(1-\theta_{L R}\right)\),
\(E(q \mid 1,-1)=\left(\theta_{Q R}-\theta_{L Q}\right) / \theta_{L R}, E(q \mid-1,1)=\left(\theta_{L Q}-\theta_{Q R}\right) / \theta_{L R}\)
and \(E(q \mid-1,-1)=\left(-1+\theta_{L Q}+\theta_{Q R}\right) /\left(1-\theta_{L R}\right)\).
Let \(\lambda_{L}=(E(q \mid 1,1)+E(q \mid 1,-1)) / 2=\frac{\theta_{Q R}\left(1-\theta_{Q R}\right)\left(1-2 \theta_{L Q}\right)}{\theta_{L R}\left(1-\theta_{L R}\right)}\)
and \(\lambda_{R}=(E(q \mid-1,1)+E(q \mid-1,-1)) / 2=\frac{\theta_{L Q}\left(1-\theta_{L Q}\right)\left(1-2 \theta_{Q R}\right)}{\theta_{L R}\left(1-\theta_{L R}\right)}\)
Then \(E\left(q \mid x_{L}, x_{R}\right)=\lambda_{L} x_{L}+\lambda_{R} x_{R}\). Where there is no marker on one side, \(E\left(q \mid x_{R}\right)=\left(1-\theta_{Q R}\right) x_{R}+\theta_{Q R}\left(-x_{R}\right)=x_{R}\left(1-2 \theta_{Q R}\right)\).
!DOM \(A\) is used to form dominance covariables from a set of additive marker covariables previously declared with the! MM marker map qualifier. It assumes the argument \(A\) is an existing group of marker variables relating to a linkage group defined using ! MM which represents additive marker variation coded \([-1\), \(0,1]\) (representing marker states \(a a, a A\) and \(A A\)) respectively. It is a group transformation which takes the \([-1,1]\) interval values, and calculates \((|X|-0.5) * 2\) i.e. -1 and 1 become one, 0 becomes -1 . The marker map is also copied and applied to this model term so it can be the argument in a qtl() term (page 95).

\section*{Other rules and examples}

Other rules include the following
- missing values are unaffected by arithmetic operations, that is, missing values in the current or target column remain missing after the transformation has been performed except in assignment
- !+3 will leave missing values (NA, * and .) as missing,
- !=3 will change missing values to 3 ,
- multiple arithmetic operations cannot be expressed in a complex expression but must be given as separate operations that are performed in sequence as they appear, for example, yield !-120 ! \(* 0.0333\) would calculate 0.0333 * (yield - 120).
\begin{tabular}{ll}
ASReml code & action \\
\hline yield !M0 & changes the zero entries in yield to missing values \\
yield !~0 & takes natural logarithms of the yield data \\
score !-5 & subtracts 5 from all values in score \\
score !SET -0.5 1.5 2.5 & \begin{tabular}{l}
replaces data values of 1,2 and 3 with -0.5, 1.5 and \\
2.5 respectively
\end{tabular} \\
\hline
\end{tabular}

\section*{Special note on covariates}

Covariates are variates that appear as independent variables in the model. It is recommended that covariates be centred and scaled to have a mean of zero and a variance of approximately one to avoid failure to detect singularities. This can be achieved either
- externally to ASReml in data file preparation,
- using ! RESCALE -mean scale where mean and scale are user supplied values, for example, age !rescale -200 !/10.

\subsection*{5.6 Datafile line}

The purpose of the datafile line is to
- nominate the data file,
- specify qualifiers to modify
- the reading of the data,
- the output produced,
- the operation of ASReml.
```

NIN Alliance Trial }198
variety !A
:
row 22
column 11
nin89aug.asd !skip 1
yield ~ mu variety

```

\section*{Data line syntax}

The datafile line appears in the ASReml command file in the form

\section*{datafile [qualifiers]}
- datafile is the path name of the file that contains the variates, factors, covariates, traits (response variates) and weight variables represented as data fields, see Chapter 4; enclose the path name in quotes if it contains embedded blanks,
- the qualifiers tell ASReml to modify either
- the reading of the data and/or the output produced, see Table 5.2 below for a list of data file related qualifiers,
- the operation of ASReml, see Tables 5.3 to 5.6 for a list of job control qualifiers
- the data file related qualifiers must appear on the data file line,
- the job control qualifiers may appear on the data file line or on following lines,
- the arguments to qualifiers are represented by the following symbols
\(f\) - a filename,
\(n\) - an integer number, typically a count,
\(p\) - a vector of real numbers, typically in increasing order,
\(r\) - a real number,
\(s\) - a character string,
\(t\) - a model term label,
\(v\) - the number or label of a data variable, vlist - a list of variable labels.

\subsection*{5.7 Data file qualifiers}

Table 5.2 lists the qualifiers relating to data input. Use the Index to check for examples or further discussion of these qualifiers.

Table 5.2: Qualifiers relating to data input and output
qualifier \(\quad\) action

Frequently used data file qualifier
!SKIP \(n\)

\section*{Other data file qualifiers}
!FILTER \(v\) !SELECT \(n\)
!FORMAT \(s\)
causes the first \(n\) records of the (non-binary) data file to be ignored. Typically these lines contain column headings for the data fields.
used to make consecutive commas imply a missing value; this, is automatically set if the file name ends with .csv or . CSV (see Section 4.2)
enables a subset of the data to be analysed; \(v\) is the number or name of a data field. When reading data, the value in field \(v\) is checked after any transformations are performed. If !select is omitted, records with zero in field \(v\) are omitted from the analysis. Otherwise, records with \(n\) in field \(v\) are retained and all other records are omitted. Warning If the filter column contains a missing value, the value from the previous non-missing record is assumed in that position.
supplies a Fortran like FORMAT statement for reading fixed for-
mat files. A simple example is !FORMAT (3I4,5F6.2) which reads 3 integer fields and 5 floating point fields from the first 42 characters of each data line. A format statement is enclosed in parentheses and may include 1 level of nested parentheses, for example, e.g. !FORMAT(4x,3(I4,f8.2)). Field descriptors are
- \(r \mathrm{X}\) to skip \(r\) character positions,
- \(\quad r \mathrm{~A} w\) to define \(r\) consecutive fields of \(w\) characters width,
- \(r \mathrm{I} w\) to define \(r\) consecutive fields of \(w\) characters width, and
- \(\quad r \mathrm{~F} w . d\) to define \(r\) consecutive fields of \(w\) characters width; \(d\) indicates where to insert the decimal point if it is not explicitly present in the field,
where \(r\) is an optional repeat count.
In ASReml, the A and I field descriptors are treated identically and simply set the field width. Whether the field is interpreted alphabetically or as a number is controlled by the ! A qualifier.

Qualifiers relating to data input and output
qualifier action

Other legal components of a format statement are
- the , character; required to separate fields - blanks are not permitted in the format.
- the / character; indicates the next field is to be read from the next line. However a / on the end of a format to skip a line is not honoured.
- BZ; the default action is to read blank fields as missing values. * and NA are also honoured as missing values. If you wish to read blank fields as zeros, include the string BZ.
- the string BM; switches back to 'blank missing' mode.
- the string \(\mathrm{T} c\); moves the 'last character read' pointer to line position \(c\) so that the next field starts at position \(c+1\). For example T 0 goes back to the beginning of the line.
- the string D; invokes debug mode.

A format showing these components is !FORMAT(\(\mathrm{D}, 3 \mathrm{I} 4,8 \mathrm{X}, \mathrm{A} 6,3(2 \mathrm{x}, \mathrm{F} 5.2) / 4 \mathrm{x}, \mathrm{BZ}, 20 \mathrm{I} 1)\) and is suitable for reading 27 fields from 2 data records such as \(11122223333 x x x x x x x x\) ALPHAFxx 4.12xx 5.32xx 6.32 xxxx123 5679013457890
!MERGE \(c f[\) !SKIP \(n][\) !MATCH \(a b]\) may be specified on a line following the datafile line. The purpose is to combine data fields from the (primary) data file with data fields from a secondary file \((f)\). The effect is to open the named file (skip \(n\) lines) and then insert the columns from the new file into field positions starting at position \(c\). If !MATCH \(a b\) is specified, ASReml checks that the field \(a\) \((0<a<c)\) has the same value as field \(b\). If not, it is assumed that the merged file has some missing records and missing values are inserted into the data record and the line from the MERGE file is kept for comparison with the next record. At this stage it is expected that the lines in the MERGE file are in the same order as the corresponding lines occur in the primary data file, and that there are no extraneous lines in the MERGE file. (It is proposed to extend this so the orders do not need to agree and that multiple lines in the primary file could be merged with the same line of the MERGE file.)

Qualifiers relating to data input and output
qualifier \(\quad\) action \(\quad\).

For example, assuming the field definitions define 10 fields, PRIMARY.DAT !skip 1
!MERGE 6 SECOND.DAT !SKIP 1 !MATCH 16
would obtain the first five fields from PRIMARY.DAT and the next five from SECOND.DAT, checking that the first field in each file has the same value.
Thus each input record is obtained by combining information from each file, before any transformations are performed.
!READ \(n\)
formally instructs ASReml to read \(n\) data fields from the data file. It is needed when there are extra columns in the data file that must be read but are only required for combination into earlier fields in transformations, or when ASReml attempts to read more fields than it needs to.
!RECODE
is required when reading a binary data file with pedigree identifiers that have not been recoded according to the pedigree file. It is not needed when the file was formed using the ! SAVE option but will be needed if formed in some other way (see Section 4.2).
!RREC \([n] \quad\) causes ASReml to read \(n\) records or to read up to a data reading error if \(n\) is omitted, and then process the records it has. This allows data to be extracted from a file which contains trailing non-data records (for example extracting the predicted values from a .pvs file). The argument (\(n\)) specifies the number of data records to be read. If not supplied, ASReml reads until a data reading error occurs, and then processes the data it has. Without this qualifier, ASReml aborts the job when it encounters a data error. See !RSKIP.
allows ASReml to skip lines at the heading of a file down to (and including) the \(n\)th instance of string \(s\). For example, to read back the third set predicted values in a .pvs file, you would specify
!RREC !RSKIP 4 ' Ecode'
since the line containing the 4th instance of 'Ecode' immediately precedes the predicted values. The ! RREC qualifier means that ASReml will read until the end of the predict table. The keyword Ecode which occurs once at the beginning and then immediately before each block of data in the .pvs file is used to count the sections.

\section*{Combining rows from separate files}

New ASReml can read data from multiple files provided the files have the same layout. The file specified as the 'primary data file' in the command file can contain lines of the form
!INCLUDE <filename> !SKIP \(n\)
where <filename> is the (path)name of the data subfile and !SKIP \(n\) is an optional qualifier indicating that the first \(n\) lines of the subfile are to be skipped. After reading each subfile, input reverts to the primary data file.

Typically, the primary data file will just contain ! INCLUDE statements identifying the subfiles to include. For example, you may have data from a series of related experiments in separate data files for individual analysis. The primary data file for the subsequent combined analysis would then just contain a set of ! INCLUDE statements to specify which experiments were being combined.

If the subfiles have CSV format, they should all have it and the ! CSV file should be declared on the primary datafile line. This option is not available in combination with !MERGE.

\subsection*{5.8 Job control qualifiers}

The following tables list the job control qualifiers. These change or control various aspects of the analysis. Job control qualifiers may be placed on the datafile line and following lines. They may also be defined using an environment variable called ASREML_QUAL. The environment variable is processed immediately after the datafile line is processed. All qualifier settings are reported in the .asr file. Use the Index to check for examples or further discussion of these qualifiers.

Important Many of these are only required in very special circumstances and new users should not attempt to understand all of them. You do need to understand that all general qualifiers are specified here. Many of these qualifiers are referenced in other chapters where their purpose will be more evident.

Table 5.3: List of commonly used job control qualifiers
\begin{tabular}{|c|c|}
\hline qualifier & action \\
\hline ! CONTINUE & \begin{tabular}{l}
is used to restart/resume iterations from the point reached in a previous run. This qualifier can alternately be set from the command line using the option letters C (continue) or F (final) (see Section 12.3 on command line options). After each iteration, ASReml writes the current values of the variance parameters to a file with extension .rsv (re-start values) with information to identify individual variance parameters. The !CONTINUE qualifier causes ASReml to scan the .rsv file for parameter values related to the current model replacing the values obtained from the .as file before iteration resumes. If the model has changed, ASReml will pick up the values it recognises as being for the same terms. Furthermore, ASReml will use estimates in the .rsv file for certain models to provide starting values for certain more general models, inserting reasonable defaults where necessary. The transitions recognised are listed and discussed in Section 7.10. \\
DIAG to FA1 \\
DIAG to CORUH (uniform heterogeneous) \\
CORUH to FA1 \\
FA \(i\) to \(\mathrm{FA} i+1\) \\
FA \(i\) to CORGH (full heterogeneous) \\
FA \(i\) to US (full heterogeneous) \\
CORGH (heterogeneous) to US
\end{tabular} \\
\hline ! CONTRAST \(s t p\) & \begin{tabular}{l}
provides a convenient way to define contrasts among treatment levels. !CONTRAST lines occur as separate lines between the datafile line and the model line. \\
\(s\) is the name of the model term being defined. \\
\(t\) is the name of an existing factor. \\
\(p\) is the list of contrast coefficients. For example \\
! CONTRAST LinN Nitrogen 31 -1 -3 \\
defines LinN as a contrast based on the 4 (implied by the length of the list) levels of factor Nitrogen. Missing values in the factor become missing values in the contrast. Zero values in the factor (no level assigned) become zeros in the contrast. The user should check that the levels of the factor are in the order assumed by contrast (check the .ass or .sln or .tab files). It may also be used on the implicit factor Trait in a multivariate analysis provided it implicitly identifies the number of levels of Trait; the number of traits is implied by the length of the list. Thus, if the analysis involves 5 traits,
\end{tabular} \\
\hline
\end{tabular}
! CONTRAST Time Trait 1351020

List of commonly used job control qualifiers
qualifier action
! FCON
New
adds a 'conditional' F-statistic column to the Analysis of Variance table. It enables inference for fixed effects in the dense part of the linear mixed model to be conducted so as to respect both structural and intrinsic marginality (see Section 2.6). The detail of exactly which terms are conditioned on is reported in the .aov file. The principle used in determining this conditional test is that a term cannot be adjusted for another term which encompasses it explicitly (e.g. term A.C cannot be adjusted for A.B.C) or implicitly (e.g. term REGION cannot be adjusted for LOCATION when locations are actually nested in regions although they are coded independently).
sets the maximum number of iterations; the default is 10 . ASReml iterates for \(n\) iterations unless convergence is achieved first. Convergence is presumed when the REML log-likelihood changes less than \(0.002^{*}\) current iteration number and the individual variance parameter estimates change less than \(1 \%\).

If the job has not converged in \(n\) iterations, use the ! CONTINUE qualifier to resume iterating from the current point.

To abort the job at the end of the current iteration, create a file named ABORTASR. NOW in the directory in which the job is running. At the end of each iteration, ASReml checks for this file and if present, stops the job, producing the usual output but not producing predicted values since these are calculated in the last iteration. Creating FINALASR .NOW will stop ASReml after one more iteration (during which predictions will be formed).

On case sensitive operating systems (eg. Unix), the filename (ABORTASR.NOW or FINALASR.NOW) must be upper case. Note that the ABORTASR. NOW file is deleted so nothing of importance should be in it. If you perform a system level abort (CTRL C or close the program window) output files other than the .rsv file will be incomplete. The .rsv file should still be functional for resuming iteration at the most recent parameter estimates (see!CONTINUE).

Use !MAXIT 1 where you want estimates of fixed effects and predictions of random effects for the particular set of variance parameters supplied as initial values. Otherwise the estimates and predictions will be for the updated variance parameters (see the !BLUP qualifier below).

List of commonly used job control qualifiers
qualifier \(\quad\) action \(\quad\)

If ! MAXIT 1 is used and an Unstructured Variance model is fitted, ASReml will perform a Score test of the US matrix. Thus, assume the variance structure is modelled with reduced parameters, if that modelled structure is then processed as the initial values of a US structure, ASReml tests the adequacy of the reduced parameterization.
causes ASReml to report a general description of the distribution of the data variables and factors and simple correlations among the variables for those records included in the analysis. This summary will ignore data records for which the variable being analysed is missing unless a multivariate analysis is requested or missing values are being estimated. The information is written to the .ass file.
! X v ! Y v ! G v ! JOIN
is used to plot the (transformed) data. Use ! X to specify
the \(x\) variable, !Y to specify the \(y\) variable and ! G to specify a grouping variable. !JOIN joins the points when the \(x\) value increases between consecutive records. The grouping variable may be omitted for a simple scatter plot. Omit ! Y \(y\) produce a histogram of the \(x\) variable.

For example,
! X age !Y height !G sex
Note that the graphs are only produced in the graphics versions of ASReml (Section 12.3).

For multivariate repeated measures data, ASReml can plot the response profiles if the first response is nominated with the ! Y qualifier and the following analysis is of the multivariate data. ASReml assumes the response variables are in contiguous fields and are equally spaced. For example

\section*{Response profiles}

Treatment ! A
Y1 Y2 Y3 Y4 Y5
rat.asd !Y Y1 !G Treatment !JOIN
Y1 Y2 Y3 Y4 Y5 ~ Trait Treatment Trait.Treatment

Table 5.4: List of occasionally used job control qualifiers
\begin{tabular}{|c|c|}
\hline qualifier & action \\
\hline \(!\) ASMV \(n\) & \begin{tabular}{l}
indicates a multivariate analysis is required although the data is presented in a univariate form. 'Multivariate Analysis' is used in the narrow sense where an unstructured error variance matrix is fitted across traits, records are independent, and observations may be missing for particular traits, see Chapter 8 for a complete discussion. \\
The data is presumed arranged in lots of \(n\) records where \(n\) is the number of traits. It may be necessary to expand the data file to achieve this structure, inserting a missing value NA on the additional records. This option is sometimes relevant for some forms of repeated measures analysis. There will need to be a factor in the data to code for trait as the intrinsic Trait factor is undefined when the data is presented in a univariate manner.
\end{tabular} \\
\hline ! ASUV & \begin{tabular}{l}
indicates that a univariate analysis is required although the data is presented in a multivariate form. Specifically, it allows you to have an error variance other than \(I \otimes \boldsymbol{\Sigma}\) where \(\boldsymbol{\Sigma}\) is the unstructured (US, see Table 7.3) variance structure. If there are missing values in the data, include !f mv on the end of the linear model. It is often also necessary to specify the ! \(\mathrm{S} 2==1\) qualifier on the R -structure lines. The intrinsic factor Trait is defined and may be used in the model. See Chapter 8 for more information. \\
This option is used for repeated measures analysis when the variance structure required is not the standard multivariate unstructured matrix.
\end{tabular} \\
\hline !COLFAC v & is used with ! SECTION \(v\) and !ROWFAC \(v\) to instruct ASReml to set up R structures for analysing a multi-environment trial with a separable first order autoregressive model for each site (environment). \(v\) is the name of a factor or variate containing column numbers (\(1 \ldots n_{c}\) where \(n_{c}\) is the number of columns) on which the data is to be sorted. See !SECTION for more detail. \\
\hline
\end{tabular}

List of occasionally used job control qualifiers
\begin{tabular}{|c|c|}
\hline qualifier & action \\
\hline \multirow[t]{2}{*}{\(!\) DDF [i]} & \begin{tabular}{l}
requests computation of the approximate denominator degrees of freedom according to Kenward and Roger (1997) for the Analysis of Variance of fixed effects terms in the dense part of the linear mixed model. There are three options for \(i\) : \(i=-1\) suppresses computation, \(i=1\) and \(i=2\) compute the denominator d.f. using numerical and algebraic methods respectively. \\
If \(i\) is omitted then \(i=2\) is assumed. \\
If !DDF \(i\) is omitted, \(i=-1\) is assumed except for small jobs (\(<10\) parameters, \(<500\) fixed effects, \(<10,000\) equations and \(<100\) Mbyte workspace) when \(i=2\).
\end{tabular} \\
\hline & Calculation of the denominator degrees of freedom is computationally expensive. Numerical derivatives require an extra evaluation of the mixed model equations for every variance parameter. Algebraic derivatives require a large dense matrix, potentially of order number of equations plus number of records and is not available when MAXIT is 1 or for multivariate analysis. \\
\hline ! DISPLAY \(n\) & \begin{tabular}{l}
is used to select particular graphic displays. In spatial analysis of field trials, four graphic displays are possible (see Section 13.4). Coding these \\
\(1=\) variogram \\
2=histogram \\
\(4=\) row and column trends \\
\(8=\) perspective plot of residuals, \\
set \(n\) to the sum of the codes for the desired graphics. The default is 9 . These graphics are only displayed in versions of ASReml linked with Winteracter (that is, Linux, Sun and PC) versions. Line printer versions of these graphics are written to the .res file. See the G command line option (Section 12.3 on graphics) for how to save the graphs in a file for printing. \\
Use ! NODISPLAY to suppress graphic displays.
\end{tabular} \\
\hline ! EPS & sets hardcopy graphics file type to .eps. \\
\hline !G v & is used to set a grouping variable for plotting, see ! x . \\
\hline
\end{tabular}

List of occasionally used job control qualifiers
qualifier \(\quad\) action \(\quad\)

\section*{! GKRIGE \([p]\)}
!MVINCLUDE
!MVREMOVE
! NODISPLAY
! HPGL [2]
! JOIN
controls the expansion of !PVAL lists for \(\mathrm{fac}(X, Y)\) model terms. For kriging prediction in 2 dimensions \((X, Y)\), the user will typically want to predict at a grid of values, not necessarily just at data combinations. The values at which the prediction is required can be specified separately for \(X\) and \(Y\) using two !PVAL statements. Normally, predict points will be defined for all combinations of \(X\) and \(Y\) values. This qualifier is required (with optional argument 1) to specify the lists are to be taken in parallel. The lists must be the same length if to be taken in parallel.
Be aware that adding two dimensional prediction points is likely to substantially slow iterations because the variance structure is dense and becomes larger. For this reason, ASReml will ignore the extra PVAL points unless either !FINAL or !GKRIGE are set, to save processing time.
\(!\) MBF \(\operatorname{mbf}(v, n) f[!\) SKIP \(k]\) specified on a separate line after the datafile line predefines the model term \(\operatorname{mbf}(v, n)\) as a set of \(n\) covariates indexed by the data values in variable \(v\). MBF stands for My Basis Function and uses the same mechanism as the leg(), pol() and \(\operatorname{spl}\) () model functions but with covariates supplied by the user. The file \(f\) should contain \(1+n\) fields where the first field contains the values which are in the data variable or at which prediction is required, and the remaining \(n\) fields define the corresponding covariate values. !SKIP \(k\) is an optional qualifier which requests the first \(k\) lines of the file be ignored.

When missing values occur in the design ASRemlwill report this fact and abort the job unless ! MVINCLUDE is specified (see Section 6.10); then missing values are treated as zeros. Use the !D transformation to drop the records with the missing values.
instructs ASReml to discard records which have missing values in the design matrix (see Section 6.10).
suppresses the graphic display of the variogram and residuals which is otherwise produced for spatial analyses in the PC and SUN versions. This option is usually set on the command line using the option letter N (see Section 12.3 on graphics). The text version of the graphics is still written to the .res file.
sets hardcopy graphics file type to .ps.

List of occasionally used job control qualifiers
qualifier action
!PVAL v \(p\)
!PVAL \(f\) vlist
!ROWFAC v
!SECTION v
is a mechanism for specifying the particular points to be predicted for covariates modelled using fac \((v), \operatorname{leg}(v, k)\), \(\operatorname{spl}(v, k)\) and \(\operatorname{pol}(v, k)\). The points are specified here so that they can be included in the appropriate design matrices. \(v\) is the name of a data field. \(p\) is the list of values at which prediction is required. See !GKRIGE for special conditions pertaining to \(\mathrm{fac}(x, y)\) prediction.
is used to read predict_points for several variables from a file f. vlist is the names of the variables having values defined. If the file contains unwanted fields, put the pseudo variate label skip in the appropriate position in vlist to ignore them. The file should only have numeric values. predict_points cannot be specified for design factors.
is used with !SECTION \(v\) and !COLFAC \(v\) to instruct ASReml to setup the \(R\) structures for multi-environment spatial analysis. \(v\) is the name of a factor or variate containing row numbers (\(1 \ldots n_{r}\) where \(n_{r}\) is the number of rows) on which the data is to be sorted. See !SECTION for more detail.
specifies the factor in the data that defines the data sections. This qualifier enables ASReml to check that sections have been correctly dimensioned but does not cause ASReml to sort the data unless ! ROWFAC and !COLFAC are also specified. Data is assumed to be presorted by section but will be sorted on row and column within section. The following is a basic example assuming 5 sites (sections).

When !ROWFAC \(v\) and !COLFAC \(v\) are both specified ASReml generates the R structures for a standard \(\mathrm{AR} \otimes \mathrm{AR}\) spatial analysis. The R structure lines that a user would normally be required to work out and type into the .as file (see the example of Section 15.6) are written to the .res file. The user may then cut and paste them into the .as file for a later run if the structures need to be modified.
```

Basic multi-environment trial analysis
site 5 \# sites coded 1 ... 5
column * \# columns coded 1 ...
row * \# rows coded 1 ...
variety !A \# variety names
yield
met.dat !SECTION site !ROWFAC row !COLFAC col
yield ~ site !r variety site.variety !f mv
site 2 0 \# variance header line

# asreml inserts the 10 lines required to define

# the R structure lines for the five sites here

```

List of occasionally used job control qualifiers
\begin{tabular}{ll}
\hline qualifier & action \\
!SPLINE spl \((v, n) p\) & \\
& defines a spline model term with an explicit set of knot points. \\
& The basic form of the spline model term, spl (\(v\)), is defined \\
& in Table 6.1 where \(v\) is the underlying variate. The basic form \\
& uses the unique data values as the knot points. The extended \\
& form is spl (\(v, n\)) which uses \(n\) knot points. Use this !SPLINE \\
& qualifier to supply an explicit set of \(n\) knot points \((p)\) for the \\
& model term \(t\). Using the extended form without using this \\
& qualifier results in \(n\) equally spaced knot points being used. \\
& The !SPLINE qualifier may only be used on a line by itself \\
& after the datafile line and before the model line. \\
& When knot points are explicitly supplied they should be in \\
& increasing order and adequately cover the range of the data \\
& or ASReml will modify them before they are applied. If you \\
& choose to spread them over several lines use a comma at the
\end{tabular}

Table 5.5: List of rarely used job control qualifiers
qualifier \(\quad\) action

\section*{! AISINGULARITIES}
can be specified to force a job to continue even though a singularity was detected in the Average Information (AI) matrix. The AI matrix is used to give updates to the variance parameter estimates. In release 1, if singularities were present in the AI matrix, a generalized inverse was used which effectively conditioned on whichever parameters were identified as singular. ASReml now aborts processing if such singularities appear unless the !AISINGULARITIES qualifier is set. Which particular parameter is singular is reported in the variance component table printed in the .asr file.
The most common reason for singularities is that the user has overspecified the model and is likely to misinterpret the results if not fully aware of the situation. Overspecification will occur in a direct product of two unconstrained variance matrices (see Section 2.4), when a random term is confounded with a fixed term and when there is no information in the data on a particular component.

The best solution is to reform the variance model so that the ambiguity is removed, or to fix one of the parameters in the variance model so that the model can be fitted. For instance, if ! ASUV is specified, you may also need \(!S 2==1\). Only rarely will it be reasonable to specify the !AISINGULARITIES qualifier.
sets hardcopy graphics file type to .bmp.
suppresses some of the information written to the .asr file. The data summary and regression coefficient estimates are suppressed. This qualifier should not be used for initial runs of a job until the user has confirmed from the data summary that the data is correctly interpreted by ASReml. Use ! BRIEF 2 to cause the predicted values to be written to the .asr file instead of the .pvs file. Use ! BRIEF -1 to get BLUE (fixed effect) estimates reported in .asr file. The !BRIEF qualifier may be set with the B command line option.
!BLUP \(n\)
restricts ASReml to performing only part of the first iteration. The estimation routine is aborted after
\(n=1\) : forming the estimates of the vector of fixed and random effects,
\(n=2\) : forming the estimates of the vector of fixed and random effects, REML log-likelihood and residuals (this is the default),
\(n=3\) : forming the estimates of the vector of fixed and random effects, REML log-likelihood, residuals and inverse coefficient matrix.

List of rarely used job control qualifiers
qualifier action

ASReml prints its standard reports as if it had completed the iteration normally, but since it has not completed it, some of the information printed will be incorrect. In particular, variance information on the variance parameters will always be wrong. Standard errors on the estimates will be wrong unless \(n=3\). Residuals are not available if \(n=1\). Use of \(n=3\) or \(n=2\) will halve the processing time when compared to the alternative of using ! MAXIT 1. However, ! MAXIT 1 does result in a complete and correct output report.
!DATAFILE \(f\)
!DENSE \(n\)
specifies the datafile name replacing the one obtained from the datafile line. It is required when different !PATHS (see ! DOPATH in Table 12.3) of a job must read different files. The !SKIP qualifier, if specified, will be applied when reading the file.
sets the number of equations solved densely up to a maximum of 5000 . By default, sparse matrix methods are applied to the random effects and any fixed effects listed after random factors or whose equation numbers exceed 800. Use !DENSE \(n\) to apply sparse methods to effects listed before the !r (reducing the size of the DENSE block) or if you have large fixed model terms and want them included in the ANOVA table. Individual model terms will not be split so that only part is in the dense section. \(n\) should be kept small \((<100)\) for faster processing.
alters the error degrees of freedom from \(\nu\) to \(\nu+n\). This qualifier might be used when analysing pre-adjusted data to reduce the degrees of freedom (\(n\) negative) or when weights are used in lieu of actual data records to supply error information (\(n\) positive). The degrees of freedom is only used in the calculation of the residual variance in a univariate single site analysis. The option will have no effect in analyses with multiple error variances (for sites or traits) other than in the reported degrees of freedom. Use !ADJUST \(r\) rather than !DF \(n\) if \(r\) is not a whole number. Use with ! YSS \(r\) to supply variance when data fully fitted.

List of rarely used job control qualifiers
qualifier action
!EMFLAG \(n\)
New !PXEM \(n\)
Caution
requests ASReml use Expectation-Maximization (EM) rather than Average Information (AI) updates when the AI updates would make a US structure non-positive definite. This only applies to US structures and is still under development. When ! GP is associated with a US structure, ASReml checks whether the updated matrix is positive definite (PD). If not, it replaces the AI update with an EM update. If the non PD characteristic is transitory, then the EM update is only used as necessary. If the converged solution would be non PD, there will be a EM update each iteration even though !EM is omitted.
EM is notoriously slow at finding the solution and ASReml includes several modified schemes, discussed by Cullis et al. (2004), particularly relevant when the AI update is consistently outside the parameter space. These include optionally performing extra local EM or PXEM (Parameter Extended EM) iterates. These can dramatically reduce the number of iterates required to find a solution near the boundary of the parameter space but do not always work well when there are several matrices on the boundary. The options are
EMFLAG [1] Standard EM plus 10 local EM steps
!EMFLAG 2 Standard EM plus 10 local PXEM steps
!PXEM [2] Standard EM plus 10 local PXEM steps
EMFLAG 3 Standard EM plus 10 local EM steps
!EMFLAG 4 Standard EM plus 10 local EM steps
!EMFLAG 5 Standard EM only
!emFLaG 6 Single local PXEM
EMFLAG 7 Standard EM plus 1 local EM step
!EMFLAG 8 Standard EM plus 10 local EM steps
Options 3 and 4 cause all US structures to be updated by (PX)EM if any particular one requires EM updates.
The test of whether the AI updated matrix is positive definitite is based on absorbing the matrix to check all pivots are positive. Repeated EM updates may bring the matrix closer to being singular. This is assessed by dividing the pivot of the first element with the first diagonal element of the matrix. If it is less than \(10^{-} 7\) (this value is consistent with the multiple partial correlation of the first variable with the rest being greater than 0.9999999 , ASReml fixes the matrix at that point and estimates any other parameters conditional on these values. To preceed with further iterations without fixing the matrix values would ultimately make the matrix such that it would be judged singular resulting the analysis being aborted.

List of rarely used job control qualifiers
qualifier action
! EQORDER \(o\)
New
!EXTRA \(n\)
modifies the algorithm used for choosing the order for solving the mixed model equations. A new algorithm devised for release 2 is now the default and is formally selected by !EQORDER 3. The algorithm used for release 1 is essentially that selected by !EQORDER 1. The new order is generally superior. !EQORDER -1 instructs ASReml to process the equations in the order they are specified in the model. Generally this will make a job much slower, if it can run at all. It is useful if the model has a suitable order as in the IBD model
\[
\mathrm{Y} \sim \operatorname{mu}!r \operatorname{l}\{\text { giv(id) id }!\}
\]
giv(id) invokes a dense inverse of an IBD matrix and id has a sparse structured inverse of an additive relationship matrix. While !EQORDER 3 generates a more sparse solution, !EQORDER -1 runs faster.
forces another \(\bmod (n, 10)\) rounds of iteration after apparent convergence. The default for \(n\) is 1 . This qualifier has lower priority than !MAXIT and ABORTASR.NOW (see !MAXIT for details).
Convergence is judged by changes in the REML log-likelihood value and variance parameters. However, sometimes the variance parameter convergence criteria has not been satisfied.
\(!\) LAST \(<\) factor \(_{1}><\operatorname{lev}_{1}>\left[<\right.\) fac \(_{2}><\operatorname{lev}_{2}><\) fac \(\left._{3}><\operatorname{lev}_{3}>\right]\)
limits the order in which equations are solved in ASReml by forcing equations in the sparse partition involving the first \(<\operatorname{lev}_{i}>\) equations of \(<\) factor \(_{i}>\) to be solved after all other equations in the sparse partition. Is intended for use when there are multiple fixed terms in the sparse equations so that ASReml will be consistent in which effects are identified as singular. The test example had
!r Anim Litter !f HYS
where genetic groups were included in the definition of Anim.
Consequently, there were 5 singularities in Anim. The default reordering allows those singularities to appear anywhere in the Anim and HYS terms. Since 29 genetic groups were defined in Anim, ! LAST Anim 29 forces the genetic group equations to be absorbed last (and therefore incorporate any singularities). In the more general model fitting
!r \(\operatorname{Tr}\).Anim \(\operatorname{Tr}\).Lit !f \(\operatorname{Tr}\). HYS
without ! LAST, the location of singularities will almost surely change if the G structures for Tr . Anim or Tr . Lit are changed, invalidating Likelihood Ratio tests between the models. ciation with the OWN variance model (page 131).

List of rarely used job control qualifiers
qualifier action

\section*{PRINT \(n\)}
causes ASReml to print the transformed data file to basename.asp. If
\(n<0\), data fields \(1 \ldots \bmod (n)\) are written to the file,
\(n=0\), nothing is written,
\(n=1\), all data fields are written to the file if it does not exist,
\(n=2\), all data fields are written to the file overwriting any previous contents,
\(n>2\), data fields \(n \ldots t\) are written to the file where \(t\) is the last defined column.
modifies the format of the tables in the .pvs file and changes the file extension of the file to reflect the format.
!PVSFORM 1 is TAB separated: .pvs \(\rightarrow\) _pvs.txt
!PVSFORM 2 is COMMA separated: .pvs \(\rightarrow\) _pvs.csv
!PVSFORM 3 is Ampersand separated: .pvs \(\rightarrow\) _pvs.tex See ! TXTFORM for more detail.
instructs ASReml to write the transformed data and the residuals to a binary file. The residual is the last field. The file basename.srs is written in single precision unless the argument is 2 in which case basename.drs is written in double precision.

The file will not be written from a spatial analysis (twodimensional error) when the data records have been sorted into field order because the residuals are not in the same order that the data is stored. The residual from a spatial analysis will have the units part added to it when units is also fitted. The .drs file could be renamed (with extension .dbl) and used for input in a subsequent run.
!SAVE \(n\)
instructs ASReml to write the data to a binary file. The file asrdata.bin is written in single precision if the argument \(n\) is 1 or 3 ; asrdata.dbl is written in double precision if the argument \(n\) is 2 or 4 ; the data values are written before transformation if the argument is 1 or 2 and after transformation if the argument is 3 or 4 . The default is single precision after transformation (see Section 4.2).

List of rarely used job control qualifiers
qualifier action
!SCREEN \([n][!\) SMX \(m\)]
!TXTFORM \([n]\)
!SPATIAL increases the amount of information reported on the residuals obtained from the analysis of a two dimensional regular grid field trial. The information is written to the .res file.
controls form of the .tab file
!TABFORM 1 is TAB separated: .tab becomes _tab.txt
!TABFORM 2 is COMMA separated: .tab becomes _tab.csv
!TABFORM 3 is Ampersand separated: .tab becomes _tab.tex See ! TXTFORM for more detail
sets the default argument for ! PVSFORM, !SLNFORM, !TABFORM and ! YHTFORM if these are not explicitly set. !TXTFORM (or !TXTFORM 1) replaces multiple spaces with TAB and changes the file extension to, say, _sln.txt. This makes it easier to load the solutions into Excel.
!TXTFORM 2 replaces multiple spaces with COMMA and changes the file extension to, say, _sln.csv. However, since factor labels sometimes contain COMMAS, this form is not so convenient.

List of rarely used job control qualifiers
qualifier \(\quad\) action
! TWOWAY
New
! VCC \(n\)
! VGSECTORS [\(s\)]
New
! WMF
! YHTFORM \([f]\)
New
! YSS \([r]\)
New
!TXTFORM 3 replaces multiple spaces with Ampersand, appends a double backslash to each line and changes the file extension to say _sln.tex (Latex style).
Additional significant digits are reported with these formats. Omitting the qualifier means the standard fixed field format is used. For .yht and. sln files, setting \(n\) to -1 means the file is not formed.
modifies the appearance of the variogram calculated from the residuals obtained when the sampling coordinates of the spatial process are defined on a lattice. The default form is based on absolute 'distance' in each direction. This form distinguishes same sign and different sign distances and plots the variances separately as two layers in the same figure.
specifies that \(n\) constraints are to be applied to the variance parameters. The constraint lines occur after the G structures are defined. The constraints are described in Section 7.9. The variance header line (Section 7.4) must be present, even if only 000 indicating there are no explicit \(R\) or \(G\) structures (see Section 7.9).
requests that the variogram formed with radial coordinates (see page 18) be based on \(s(4,6\) or 8\()\) sectors of size \(180 / s\) degrees. The default is 4 sectors if !VGSECTORS is omitted and 6 sectors if it is specified without an argument. The first sector is centred on the \(X\) direction.

Figure 5.1 is the variogram using radial coordinates obtained using predictors of random effects fitted as fac (xsca,ysca). It shows low semivariance in xsca direction, high semivariance in the ysca direction with intermediate values in the 45 and 135 degrees directions.
sets hardcopy graphics file type to . wmf.
controls the form of the .yht file
! YHTFORM -1 suppresses formation of the .yht file ! YHTFORM 1 is TAB separated: .yht becomes _yht.txt !YHTFORM 2 is COMMA separated: .yht becomes _yht.csv ! YHTFORM 3 is Ampersand separated: . yht becomes _yht.tex adds \(r\) to the total Sum of Squares. This might be used with ! DF to add some variance to the analysis when analysing summarised data.

Figure 5.1 Variogram in 4 sectors for Cashmore data

Table 5.6: List of very rarely used job control qualifiers
qualifier action
!AILOADINGS \(i\)
New
controls modification to AI updates of loadings in factor analytic variance models. After ASReml calculates updates for variance parameters, it checks whether the updates are reasonable and sometimes reduces them. For factor loadings, the default behaviour is to shrink the loadings only in the first iteration if they appear large. This qualifier gives some user control. If it is specified without an argument, no (extra) shrinkage is allowed. Otherwise shrinkage is allowed in the first \(i\) iterations.
prints the portion of the inverse of the coefficient matrix per- taining to the \(n^{\text {th }}\) term in the linear model. Because the model has not been defined when ASReml reads this line, it is up to the user to count the terms in the model to identify the portion of the inverse of the coefficient matrix to be printed. The option is ignored if the portion is not wholly in the SPARSE stored equations. The portion of the inverse is printed to a file with extension .cii The sparse form of the matrix only is printed in the form \(i j C^{i j}\), that is, elements of \(C^{i j}\) that were not needed in the estimation process are not included in the file.

List of very rarely used job control qualifiers
\begin{tabular}{|c|c|}
\hline qualifier & action \\
\hline !FACPOINTS \(n\) & affects the number of distinct points recognised by the fac() model function (Table 6.1). The default value of \(n\) is 1000 so that points closer than \(0.1 \%\) of the range are regarded as the same point. \\
\hline !KNOTS \(n\) & changes the default knot points used when fitting a spline to data with more than \(n\) different values of the spline variable. When there are more than \(n\) (default 50) points, ASReml will default to using \(n\) equally spaced knot points. \\
\hline ! NOCHECK & forces ASReml to use any explicitly set spline knot points (see !SPLINE) even if they do not appear to adequately cover the data values. \\
\hline ! NOREORDER & prevents the automatic reversal of the order of the fixed terms (in the dense equations) and possible reordering of terms in the sparse equations. \\
\hline ! NOSCRATCH & forces ASReml to hold the data in memory. ASReml will usually hold the data on a scratch file rather than in memory. In large jobs, the system area where scratch files are held may not be large enough. A Unix system may put this file in the /tmp directory which may not have enough space to hold it. \\
\hline !POLPOINTS \(n\) & affects the number of distinct points recognised by the pol() model function (Table 6.1). The default value of \(n\) is 1000 so that points closer than \(0.1 \%\) of the range are regarded as the same point. \\
\hline !PPOINTS \(n\) & influences the number of points used when predicting splines and polynomials. The design matrix generated by the leg(), pol() and spl() functions are modified to include extra rows that are accessed by the PREDICT directive. The default value of \(n\) is 21 if there is no !PPOINTS qualifier. The range of the data is divided by \(n-1\) to give a step size \(i\). For each point \(p\) in the list, a predict point is inserted at \(p+i\) if there is no data value in the interval \([p, p+1.1 \times i]\). ! PPOINTS is ignored if !PVAL is specified for the variable. This process also effects the number of levels identified by the fac() model term. \\
\hline !REPORT & forces ASReml to attempt to produce the standard output report when there is a failure of the iteration algorithm. Usually no report is produced unless the algorithm has at least produced estimates for the fixed and random effects in the model. Note that residuals are not included in the output forced by this qualifier. This option is primarily intended to help debugging a job that is not converging properly. \\
\hline
\end{tabular}

List of very rarely used job control qualifiers
qualifier action
!SCALE 1
!SCORE
New
!SLOW \(n\)
!TOLERANCE \(\left[s_{1}\left[s_{2}\right]\right]\)
New
! VRB
New

When forming a design matrix for the spl() model term, ASReml uses a standardized scale (independent of the actual scale of the variable). The qualifier !SCALE 1 forces ASReml to use the scale of the variable. The default standardised scale is appropriate in most circumstances.
requests ASReml write the SCORE vector and the Average Information matrix to files basename. SCO and basename.AIM. The values written are from the last iteration.
reduces the update step sizes of the variance parameters more persistently than the !STEP \(r\) qualifier. If specified, ASReml looks at the potential size of the updates and if any are large, it reduces the size of \(r\). If \(n\) is greater than 10 ASReml also modifies the Information matrix by multiplying the diagonal elements by \(n\). This has the effect of further reducing the updates. This option may help when you do not have good starting values, especially in multivariate analyses.
modifies the ability of ASReml to detect singularities in the mixed model equations. This is intended for use on the rare occasions when ASReml detects singularities after the first iteration; they are not expected. Normally (when no ! TOLERANCE qualifier is specified), a singularity is declared if the adjusted sum of squares of a covariable is less than a small constant \((\eta)\) or less than the uncorrected sum of squares \(\times \eta\), where \(\eta\) is \(10^{-8}\) in the first iteration and \(10^{-10}\) thereafter. The qualifier scales \(\eta\) by \(10^{s_{i}}\) for the the first or subsequent iterations respectively, so that it is more likely an equation will be declared singular. Once a singularity is detected, the corresponding equation is dropped (forced to be zero) in subsequent iterations. If neither argument is supplied, 2 is assumed. If the second argument is omitted, it is given the value of the first.
If the problem of later singularities arises because of the low coefficient of variation of a covariable, it would be better to centre and rescale the covariable. If the degrees of freedom are correct in the first iteration, the problem will be with the variance parameters and a different variance model (or variance constraints) is required.
requests writing of .vrb file. Previously, the default was to write the file.

\author{
Introduction \\ Specifying model formulae in ASReml \\ General rules \\ Examples \\ Fixed terms in the model \\ Primary fixed terms \\ Sparse fixed terms \\ Random terms in the model \\ Interactions and conditional factors \\ Interactions \\ Conditional factors
}

Alphabetic list of model functions
Weights
Missing values
Missing values in the response
Missing values in the explanatory variables
Some technical details about model fitting in ASReml
Sparse versus dense
Ordering of terms in ASReml
Aliassing and singularities
Examples of aliassing
Analysis of Variance table

\subsection*{6.1 Introduction}

The linear mixed model is specified in ASReml as a series of model terms and qualifiers. In this chapter the model formula syntax is described.

\subsection*{6.2 Specifying model formulae in ASReml}

The linear mixed model is specified in ASReml as a series of model terms and qualifiers. Model terms include factor and variate labels (Section 5.4), functions of labels, special terms and interactions of these. The model is specified immediately after the datafile and any job control qualifier and/or tabulate lines. The syntax for specifying the model is
```

NIN Alliance Trial }198
variety
\vdots
column 11
nin89.asd !skip 1
yield ~ mu variety !r repl,
!f mv
12
11 column AR1 . }
22 row AR1 . }

```
response \([!\mathrm{wt}\) weight \(] \sim\) fixed \([\) !r random \(][!\mathrm{f}\) sparse_fixed \(]\)
- response is the label for the response variable(s) to be analysed; multivariate analysis is discussed in Chapter 8,
- weight is a label of a variable containing weights; weighted analysis is discussed in Section 6.7,
- \(\sim\) separates response from the list of fixed and random terms,
- fixed represents the list of primary fixed explanatory terms, that is, variates, factors, interactions and special terms for which analysis of variance (ANOVA) type tests are required. See Table 6.1 for a brief definition of reserved model terms, operators and commonly used functions. The full definition is in Section 6.6,
- random represents the list of explanatory terms to be fitted as random effects, see Table 6.1,
- sparse_fixed are additional fixed terms not included in the ANOVA table.

\section*{General rules}

The following general rules apply in specifying the linear mixed model
- all elements in the model must be space separated,
- the character \(\sim\) separates the response variables(s) from the explanatory variables in the model,

Choose labels - data fields are identified in the model by their labels
that will avoid confusion
- labels are case sensitive,
- labels may be abbreviated (truncated) when used in the model line but care must be taken that the truncated form is not ambiguous. If the truncated form matches more than one label, the term associated with the first match is assumed,
- model terms may only appear once in the model line; repeated occurrences are ignored,
- model terms other than the original data fields are defined the first time they appear on the model line. They may be abbreviated (truncated) if they are referred to again provided no ambiguity is introduced.
Important It is often clearer if labels are not abbreviated. If abbreviations are used then they need to be chosen to avoid confusion.
- if the model is written over several lines, all but the final line must end with a comma to indicate that the list is continued.

In Tables 6.1 and 6.2, the arguments in model term functions are represented by the following symbols
\(f\) - the label of a data variable defined as a model factor,
\(k, n-\) an integer number,
\(r\) - a real number,
\(t\) - a model term label (includes data variables),
\(v, y\) - the label of a data variable,

Parsing of model terms in ASReml is not very sophisticated. Where a model term takes another model term as an argument, the argument must be predefined. If necessary, include the argument in the model line with a leading '-' which will cause the term to be defined but not fitted. For example

Trait.male -Trait.female and(Trait.female)
Also, dens is an abbeviation for density but spl(dens,7) is a different model term (albiet probably equivalent) to spl (density, 7) because it does not represent a simple truncation.

Table 6.1: Summary of reserved words, operators and functions

Summary of reserved words, operators and functions

Summary of reserved words, operators and functions
\begin{tabular}{|c|c|c|c|}
\hline model term & brief description & \begin{tabular}{l}
comm \\
fixed
\end{tabular} & \begin{tabular}{l}
n usage \\
random
\end{tabular} \\
\hline \(\operatorname{pol}(v,[-] n)\) & forms \(n+1\) orthogonal polynomials of order 0 (intercept), 1 (linear)...n from the values in \(v\); the intercept polynomial is omitted if \(n\) is preceded by the negative sign. & \(\checkmark\) & \\
\hline \(\operatorname{pow}(x, p[, o])\) & defines the covariable \((x+o)^{p}\) for use in the model where \(x\) is a variable in the data, \(p\) is a power and \(o\) is an offset. & \(\checkmark\) & \\
\hline qtl \((f, p)\) & impute a covariable from marker map information at position \(p\) & \(\sqrt{ }\) & \\
\hline \(\sin (v, r)\) & forms sine from \(v\) with period \(r\) & \(\sqrt{ }\) & \\
\hline \(\operatorname{sqrt}(v[, r])\) & forms square root of \(v+r\) & \(\checkmark\) & \\
\hline uni (\(f\)) & forms a factor with a level for each record where factor \(f\) is non-zero & & \(\sqrt{ }\) \\
\hline uni (\(f, n\)) & forms a factor with a level for each record where factor \(f\) has level \(n\) & & \(\sqrt{ }\) \\
\hline \(\mathrm{xfa}(f, k)\) & is formally a copy of factor \(f\) with \(k\) extra levels. This is used when fitting extended factor analytic models (XFA, Table 7.3) of order \(k\). & & \(\sqrt{ }\) \\
\hline
\end{tabular}

\section*{Examples}
\begin{tabular}{ll}
ASReml code & action \\
\hline yield \(\sim\) mu variety & \begin{tabular}{l}
fits a model with a constant and fixed \\
variety effects
\end{tabular} \\
yield \(\sim\) mu variety !r block & \begin{tabular}{l}
fits a model with a constant term, fixed \\
variety effects and random block effects
\end{tabular} \\
yield \(\sim\) mu time variety time.variety & \begin{tabular}{l}
fits a saturated model with fixed time \\
and variety main effects and time by va- \\
riety interaction effects
\end{tabular} \\
livewt \(\sim\) mu breed sex breed.sex !r sire & \begin{tabular}{l}
fits a model with fixed breed, sex and \\
breed by sex interaction effects and ran- \\
dom sire effects
\end{tabular}
\end{tabular}

\subsection*{6.3 Fixed terms in the model}

\section*{Primary fixed terms}

The fixed list in the model formula
- describes the fixed covariates, factors and interactions including special functions to be included in the ANOVA table,
- generally begins with the reserved word mu which fits a constant term, mean or intercept, see Table 6.1.
```

NIN Alliance Trial }198
variety
row 22
column 11
nin89.asd !skip 1 !mvinclude
yield ~ mu variety !r repl,
!f mv
12
11 column AR1 . 3
22 row AR1 . 3

```

\section*{Sparse fixed terms}

The !f sparse_fixed terms in model formula
- are the fixed covariates (for example, the fixed \(\operatorname{lin}\) (row) covariate now included in the model formula), factors and interactions including special functions and reserved words (for example mv, see Table 6.1) for which ANOVA type tests are not required,
- include large (>100 levels) terms.
```

NIN Alliance Trial }198
variety
row 22
column 11
nin89.asd !skip 1
yield ~ mu variety !r repl,
!f mv lin(row)
12
11 column AR1 . }42
22 row AR1 . }90

```

\subsection*{6.4 Random terms in the model}

The I r random terms in the model formula
- comprise random covariates, factors and interactions including special functions and reserved words, see Table 6.1,
- involve an initial non-zero variance component or ratio (relative to the residual variance) default 0.1 ; the initial value can be specified after the model term or if the variance structure is not scaled identity, by syn-
```

NIN Alliance Trial }198
variety
row 22
column 11
nin89.asd !skip 1
yield ~ mu variety !r repl,
!f mv 1 2
11 column AR1 . }42
22 row AR1 . }90

``` tax described in detail in Chapter 7,
- an initial value of its variance (ratio) may be followed by a ! GP (keep positive, the default), ! GU (unrestricted) or !GF (fixed) qualifier, see Table 7.4,
- use ! \{ and !\} to group model terms that may not be reordered. Normally ASReml will reorder the model terms in the sparse equations - putting smaller terms first to speed up calculations. However, the order must be preserved if the user defines a structure for a term which also covers the following term(s) (a way of defining a covariance structure across model terms). Grouping is specifically required if the model terms are of differing sizes (number of effects). For example, for traits weaning_weight and yearling-weight, an animal model with maternal weaning weight should specify model terms ! \{ Trait.animal at(Trait,1).dam !\}
when fitting a genetic covariance between the direct and maternal effects.

\subsection*{6.5 Interactions and conditional factors}

\section*{Interactions}
- interactions are formed by joining two or more terms with a '. or a ' \(:\) ', for example, \(\mathrm{a} . \mathrm{b}\) is the interaction of factors a and b ,
- interaction levels are arranged with the levels of the second factor nested within the levels of the first,
- labels of factors including interactions are restricted to 31 characters of which only the first 20 are ever displayed. Thus for interaction terms it is often necessary to shorten the names of the component factors in a systematic way, for example, if Time and Treatment are defined in this order, the interaction between Time and Treatment could be specified in the model as Time. Treat; remember that the first match is taken so that if the label of each field begins with a different letter, the first letter is sufficient to identify the term,
- interactions can involve model functions,
- * indicates factorial expansion (up to 5 way)
\(\mathrm{a} * \mathrm{~b}\) is expanded to a \(\mathrm{b} \mathrm{a} . \mathrm{b}\)
\(\mathrm{a} * \mathrm{~b} * \mathrm{c} * \mathrm{~d}\) is expanded to
a b c d a.b a.c a.d b.c b.d c.d a.b.c a.b.d a.c.d b.c.d a.b.c.d
- / indicates nested expansion

New \(\quad \mathrm{a} / \mathrm{b}\) is expanded to \(\mathrm{a} \mathrm{a} . \mathrm{b}\)
- a. (b c d) e is expanded to a.b a.c a.d e. This syntax is detected by the string '.(' and the closing parenthesis must occur on the same line and before any comma indicating continuation. Any number of terms may be enclosed. Each may have '-' prepended to suppress it from the model. Each enclosed term may have initial values and qualifiers following. For example,
```

yield~site site.(lin(row) !r variety),
at(site,1).(row . 3 col .2)

```
expands to
```

yield~site site.lin(row) !r site.variety,
at(site,1).row . 3 at(site,1).col . 2

```

\section*{Conditional factors}

A conditional factor is a factor that is present only when another factor has a particular level.
- individual components can be specified using the at \((f, n)\) function (see Table 6.2), for example, at (site,1).row will fit row as a factor only for site 1 ,
- a complete set of conditional terms are specified by omitting the level specification in the at \((f)\) function provided the correct number of levels of \(f\) is specified in the field definitions. Otherwise, a list of levels may be specified.
- at \((f) . \mathrm{b}\) creates a series of model terms representing b nested within a for any model term b . A model term is created for each level of a ; each has the size of b. For example, if site and geno are factors with 3 and 10 levels respectively, then for at(site).geno ASReml constructs 3 model terms at (site,1).geno at (site, 2). geno at (site, 3).geno, each with 10 levels,
- this is similar to forming an interaction except that a separate model term is created for each level of the first factor; this is useful for random terms when each component can have a different variance. The same effect is achieved by using an interaction (e.g. site.geno) and associating a DIAG variance structure with the first component (see Section 7.5).

\subsection*{6.6 Alphabetic list of model functions}

Table 6.2 presents detailed descriptions of the model functions discussed above. Note that some three letter function names may be abbreviated to the first letter.

Table 6.2: Alphabetic list of model functions and descriptions
\begin{tabular}{ll}
model function & action \\
\hline \begin{tabular}{l}
and \((t, r)\) \\
\(\mathrm{a}(t, r)\)
\end{tabular} & \begin{tabular}{l}
overlays (adds) \(r\) times the design matrix for model term \(t\) to the existing \\
design matrix. Specifically, if the model up to this point has \(p\) effects and
\end{tabular} \\
\(t\) has \(a\) effects, the \(a\) columns of the design matrix for \(t\) are multiplied by \\
the scalar \(r\) (default value 1.0) and added to the last \(a\) of the \(p\) columns \\
already defined. The overlaid term must agree in size with the term it \\
overlays. This can be used to force a correlation of 1 between two terms \\
as in a diallel analysis \\
male and (female) \\
assuming the \(i\) th male is the same individual as the \(i\) th female. Note that \\
if the overlaid term is complex, it must be predefined; e.g. \\
& Tr.male -Tr.female and(Tr.female).
\end{tabular}

Alphabetic list of model functions and descriptions
model function action
\begin{tabular}{|c|c|c|}
\hline & \[
\begin{aligned}
& \text { at }(f, n) \\
& @(f, n)
\end{aligned}
\] & defines a binary variable which is 1 if the factor \(f\) has level \(n\) for the record. For example, to fit a row factor only for site 3 , use the expression at (site, 3) .row.. The string \(@\) (is equivalent to at (for this function. \\
\hline New & \[
\begin{aligned}
& \text { at }(f) \\
& @(f)
\end{aligned}
\] & at \((f)\) is expanded to a series of terms like at \((f, i)\) where \(i\) takes the values 01 to the number of levels of factor \(f\). Since this command is interpreted before the data is read, it is necessary to declare the number of levels correctly in the field definition. This extended form may only be used as the first term in an interaction. \\
\hline & \[
\begin{aligned}
& \text { at }(f, m, n) \\
& \mathbb{C}(f, m, n)
\end{aligned}
\] & at \((f, i, j, k)\) is expanded to a series of terms at \((f, i)\) at \((f, j)\) at \((f, k)\). Similarly, at \((f, i) . \mathrm{X}\) at \((f, j) . \mathrm{X}\) at \((f, k) . \mathrm{X}\) can be written as at \((f, i, j, k) . X\) provided at \((f, i, j, k)\) is written as the first component of the interaction. Any number of levels may be listed. \\
\hline & \(\cos (v, r)\) & forms cosine from \(v\) with period \(r\). Omit \(r\) if \(v\) is radians. If \(v\) is degrees, \(r\) is 360 . \\
\hline & \[
\begin{aligned}
& \operatorname{con}(f) \\
& c(f)
\end{aligned}
\] & \begin{tabular}{l}
apply sum to zero constraints to factor \(f\). It is not appropriate for random factors and fixed factors with missing cells. ASReml assumes you specify the correct number of levels for each factor. The formal effect of the con() function is to form a model term with the highest level formally equal to minus the sum of the preceding terms. \\
With sum to zero constraints, a missing treatment level will generate a singularity but in the first coefficient rather than in the coefficient corresponding to the missing treatment. In this case, the coefficients will not be readily interpretable. When interacting constrained factors, all cells in the cross-tabulation should have data.
\end{tabular} \\
\hline & \[
\begin{aligned}
& \operatorname{fac}(v) \\
& \mathrm{fac}(v, y)
\end{aligned}
\] & \(\mathrm{fac}(v)\) forms a factor with a level for each value of \(x\) and any additional points inserted as discussed with the qualifiers !PPOINTS and !PVAL. \(\mathrm{fac}(v, y)\) forms a factor with a level for each combination of values from \(v\) and \(y\). The values are reported in the .res file. \\
\hline & \[
\begin{aligned}
& \operatorname{giv}(f, n) \\
& \operatorname{g}(f, n)
\end{aligned}
\] & associates the \(n\)th .giv G-inverse with the factor. This is used when there is a known (except for scale) G-structure other than the additive inverse genetic relationship matrix. The G-inverse is supplied in a file whose name has the file extension .giv described in Section 9.6 \\
\hline
\end{tabular}

Alphabetic list of model functions and descriptions
\begin{tabular}{|c|c|}
\hline model function & action \\
\hline \(h(f)\) & \(\mathrm{h}(f)\) requests ASReml to fit the model term for factor \(f\) using Helmert constraints. Neither Sum-to-zero nor Helmert constraints generate interpretable effects if singularities occur. ASReml runs more efficiently if no constraints are applied. Following is an example of Helmert and sum-to-zero covariables for a factor with 5 levels. \\
\hline \[
\begin{aligned}
& \operatorname{ide}(f) \\
& \text { i(f) }
\end{aligned}
\] & is used to take a copy of a pedigree factor \(f\) and fit it without the genetic relationship covariance. This facilitates fitting a second animal effect. Thus, to form a direct, maternal genetic and maternal environment model, the maternal environment is defined as a second animal effect coded the same as dams. viz. !r ! \{ animal dam !\} ide(dam) \\
\hline \(\operatorname{inv}(v[, r])\) & forms the reciprocal of \(v+r\). This may also be used to transform the response variable. \\
\hline \(\operatorname{leg}(v,[-] n)\) & forms \(n+1\) Legendre polynomials of order 0 (intercept), 1 (linear)...n from the values in \(v\); the intercept polynomial is omitted if \(n\) is preceded by the negative sign. The actual values of the coefficients are written to the .res file. This is similar to the pol() function described below. \\
\hline \[
\begin{aligned}
& \operatorname{lin}(f) \\
& I(f)
\end{aligned}
\] & takes the coding of factor \(f\) as a covariate. The function is defined for \(f\) being a simple factor, Trait and units. The lin(\(f\)) function does not centre or scale the variable. Motivation: Sometimes you may wish to fit a covariate as a random factor as well. If the coding is say \(1 \ldots n\), then you should define the field as a factor in the field definition and use the lin() function to include it as a covariate in the model. Do not centre the field in this case. If the covariate values are irregular, you would leave the field as a covariate and use the fac() function to derive a factor version. \\
\hline \(\log (v[, r])\) & forms the natural log of \(v+r\). This may also be used to transform the response variable. \\
\hline \begin{tabular}{l}
ma1 \\
\(\operatorname{ma1}(f)\)
\end{tabular} & creates a first-differenced (by rows) design matrix which, when defining a random effect, is equivalent to fitting a moving average variance structure in one dimension. In the ma1 form, the first-difference operator is coded across all data points (assuming they are in time/space order). Otherwise the coding is based on the codes in the field indicated. \\
\hline mu & is used to fit the intercept/constant term. It is normally present and listed first in the model. It should be present in the model if there are no other fixed factors or if all fixed terms are covariates or contrasts except in the special case of regression through the origin. \\
\hline
\end{tabular}

Alphabetic list of model functions and descriptions
model function action
mv is used to estimate missing values in the response variable. Formally this creates a model term with a column for each missing value. Each column contains zeros except for a solitary - 1 in the record containing the corresponding missing value. This is used in spatial analyses so that computing advantages arising from a balanced spatial layout can be exploited. The equations for mv and any terms that follow are always included in the sparse set of equations.

Missing values are handled in three possible ways during analysis (see Section 6.10). In the simplest case, records containing missing values in the response variable are deleted. For multivariate (including some repeated measures) analysis, records with missing values are not deleted but ASReml drops the missing observation and uses the appropriate unstructured R-inverse matrix. For regular spatial analysis, we prefer to retain separability and therefore estimate the missing value(s) by including the special term mv in the model.
out \((n)\), out \((n, t)\) establishes a binary variable which is:
```

out (n,t)

```
New
out (i) 1 if data relates to observation \(i\), (trait 1), else is 0
out \((i, t) 1\) if data relates to observation \(i\), (trait \(t\)), else is 0
The intention is that this be used to test/remove single observations for example to remove the influence of an outlier or influential point. Possible outliers will be evident in the plot of residuals versus fitted values (see the .res file) and the appropriate record numbers for the out () term are reported in the .res file. Note that \(i\) relates to the data analysed and will not be the same as the record number as obtained by counting data lines in the data file if there were missing observations in the data and they have not been estimated. (To drop records based on the record number in the data file, use the ! D transformation in association with the \(!=\mathrm{V} 0\) transformation.)
\(\operatorname{pol}(v, n)\) \(\mathrm{p}(v, n)\)
forms a set of orthogonal polynomials of order \(|n|\) based on the unique values in variate (or factor) \(v\) and any additional interpolated points, see ! PPOINTS and !PVAL in Table 5.4. It includes the intercept if \(n\) is positive, omits it if \(n\) is negative. For example, pol(time,2) forms a design matrix with three columns of the orthogonal polynomial of degree 2 from the variable time. Alternatively, pol (time,-2) is a term with two columns having centred and scaled linear coefficients in the first column and centred and scaled quadratic coefficients in the second column.
The actual values of the coefficients are written to the .res file. This factor could be interacted with a design factor to fit random regression models. The leg() function differs from the pol() function in the way the quadratic and higher polynomials are calculated.

Alphabetic list of model functions and descriptions
\begin{tabular}{|c|c|}
\hline model function & action \\
\hline \(\operatorname{pow}(x, p[, o])\) & defines the covariable \((x+o)^{p}\) for use in the model where \(x\) is a variable in the data, \(p\) is a power and \(o\) is an offset. pow \((x, 0.5[, o])\) is equivalent to \(\operatorname{sqr}(x[, o]) ; \operatorname{pow}(x, 0[, o])\) is equivalent to \(\log (x[, o]) ; \operatorname{pow}(x,-1[, o])\) is equivalent to \(\operatorname{inv}(x[, o])\). \\
\hline \(\mathrm{qtl}(f, r)\) & calculates an expected marker state from flanking marker information at position \(r\) of the linkage group \(f\) (see !MM to define marker locations). \(r\) may be specified as \(\$\) TP \(n\) where \(\$\) TP \(n\) has been previously internally defined with a predict statement (see page 164). \(r\) should be given in Morgans. \\
\hline \(\sin (v, r)\) & forms sine from \(v\) with period \(r\). Omit \(r\) if \(v\) is radians. If \(v\) is degrees, \(r\) is 360 . \\
\hline \[
\begin{aligned}
& \operatorname{spl}(v[, k]) \\
& \mathrm{s}(v[, k])
\end{aligned}
\] & \begin{tabular}{l}
In order to fit spline models associated with a variate \(v\) and \(k\) knot points in ASReml, \(v\) is included as a covariate in the model and \(\operatorname{spl}(v, k)\) as a random term. The knot points can be explicitly specified using the !SPLINE qualifier (Table 5.4). If \(k\) is specified but ! SPLINE is not specified, equally spaced points are used. If \(k\) is not specified and there are less than 50 unique data values, they are used as knot points. If there are more than 50 unique points then 50 equally spaced points will be used. The spline design matrix formed is written to the .res file. An example of the use of spl() is \\
price \(\sim\) mu week !r spl(week)
\end{tabular} \\
\hline \(\operatorname{sqrt}(v[, r])\) & forms the square root of \(v+r\). This may also be used to transform the response variable. \\
\hline Trait & is used with multivariate data to fit the individual trait means. It is formally equivalent to mu but Trait is a more natural label for use with multivariate data. It is interacted with other factors to estimate their effects for all traits. \\
\hline units & creates a factor with a level for every record in the data file. This is used to fit the 'nugget' variance when a correlation structure is applied to the residual. \\
\hline \(\operatorname{uni}(f[, 0[, n]])\) & creates a factor with a new level whenever there is a level present for the factor \(f\). Levels (effects) are not created if the level of factor \(f\) is 0 , missing or negative. The size may be set in the third argument by setting the second argument to zero. \\
\hline
\end{tabular}

Alphabetic list of model functions and descriptions
model function action
uni \((f, k[, n]\) creates a factor with a level for every record subject to the factor level of \(f\) equalling \(k\), i.e. a new level is created for the factor whenever a new record is encountered whose integer truncated data value from data field \(f\) is \(k\). Thus uni (site,2) would be used to create an independent error term for site 2 in a multi-environment trial and is equivalent to at (site, 2) . units. The default size of this model term is the number of data records. The user may specify a lower number as the third argument. There is little computational penalty from the default but the .sln file may be substantially larger than needed.
\(\mathrm{xfa}(f, k) \quad\) Factor analytic models are discussed in Chapter 7. There are three forms, FA \(k\), FACV \(k\) and XFA \(k\) where \(k\) is the number of factors. The XFA \(k\) form is a sparse formulation that requires an extra \(k\) levels to be inserted into the mixed model equations for the \(k\) factors. This is achieved by the \(\operatorname{xfa}(f, k)\) model function which defines a design matrix based on the design matrix for \(f\) augmented with \(k\) columns of zeros for the \(k\) factors.

\subsection*{6.7 Weights}

Weighted analyses are achieved by using ! WT weight as a qualifier to the response variable. An example of this is y ! WT wt \(\sim \mathrm{mu}\) A X where y is the name of the response variable and wt is the name of a variate in the data containing weights. If these are relative weights (to be scaled by the units variance) then this is all that is required. If they are absolute weights, that is, the reciprocal of known variances, use the \(!\mathrm{S} 2==1\) qualifier described in Table 7.4 to fix the unit variance. When a structure is present in the residuals the weights are applied as a matrix product. If \(\boldsymbol{\Sigma}\) is the structure and \(\boldsymbol{W}\) is the diagonal matrix constructed from the square root of the values of the variate weight, then \(\boldsymbol{R}^{-1}=\boldsymbol{W} \boldsymbol{\Sigma}^{-1} \boldsymbol{W}\). Negative weights are treated as zeros.

\subsection*{6.8 Generalized Linear Models}

ASReml includes facilities for fitting the family of Generalized Linear Models (GLMs, McCullagh and Nelder, 1994). GLMs are specified by qualifiers after the name of the dependent variable but before the \(\sim\) character. Table 6.3 lists the link
function qualifiers which relate the linear predictor \((\boldsymbol{\eta})\) scale to the observation (\(\boldsymbol{\mu}=\mathrm{E}[\boldsymbol{y}]\)) scale. Table 6.4 lists the distributions and other qualifiers.

A second dependent variable may be specified if a bivariate analysis is required but it will always be treated as a normal variate (no syntax is provided for specifying GLM attributes for it). The ! ASUV qualifier is required in this situation for the GLM weights to be utilized.

Table 6.3 Link qualifiers and functions
\begin{tabular}{llll}
\hline Qualifier & Link & Inverse Link & Available with \\
\hline !IDENTITY & \(\boldsymbol{\eta}=\boldsymbol{\mu}\) & \(\boldsymbol{\mu}=\boldsymbol{\eta}\) & All \\
!SQRT & \(\boldsymbol{\eta}=\sqrt{\boldsymbol{\mu}}\) & \(\boldsymbol{\mu}=\boldsymbol{\eta}^{2}\) & \begin{tabular}{l}
Poisson \\
!LOGARITHM
\end{tabular} \\
\(\boldsymbol{\eta}=\ln (\boldsymbol{\mu})\) & \(\boldsymbol{\mu}=\exp (\boldsymbol{\eta})\) & \begin{tabular}{l}
Normal, Poisson, \\
Negative Binomial, \\
Gamma
\end{tabular} \\
!INVERSE & \(\boldsymbol{\eta}=1 / \boldsymbol{\mu}\) & \(\boldsymbol{\mu}=1 / \boldsymbol{\eta}\) & Normal, Gamma, \\
!LOGIT & \(\boldsymbol{\eta}=\boldsymbol{\mu} /(1-\boldsymbol{\mu})\) & \(\boldsymbol{\mu}=\frac{1}{(1+\exp (-\boldsymbol{\eta}))}\) & Negative Binomial \\
Binomial \\
!PROBIT & \(\boldsymbol{\eta}=\Phi^{-1}(\boldsymbol{\mu})\) & \(\boldsymbol{\mu}=\Phi(\boldsymbol{\eta})\) & Binomial \\
!COMPLOGLOG & \(\boldsymbol{\eta}=\ln (-\ln (1-\boldsymbol{\mu}))\) & \(\boldsymbol{\mu}=1-e^{-e^{\boldsymbol{\eta}}}\) & Binomial
\end{tabular}
where \(\mu\) is the mean on the data scale and \(\boldsymbol{\eta}=\boldsymbol{X} \boldsymbol{\tau}\) is the linear predictor on the underlying scale.

Table 6.4: GLM qualifiers
\begin{tabular}{ll}
qualifiers & action \\
\hline Distributions & \begin{tabular}{l}
where \(\mu\) is the mean on the data scale calculated from \(\boldsymbol{\eta}=\boldsymbol{X} \boldsymbol{\tau}, n\) \\
is the count specified by the !TOTAL qualifier, \(v\) is the variance \\
expression for the distribution, \(d\) is the deviance expression for \\
the distribution, \(y\) is the observation and \(\phi\) is a parameter set
\end{tabular} \\
with the ! PHI qualifier. The default link is listed first followed by \\
permitted alternatives.
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{GLM qualifiers} \\
\hline qualifier & action \\
\hline \[
\begin{aligned}
& \text { !BINOMIAL [! LOGIT | ! I } \\
& v=\mu(1-\mu) / n \\
& d=2 n(y \ln (y / \mu) \\
& \left.+(1-y) \ln \left(\frac{1-y}{1-\mu}\right)\right)
\end{aligned}
\] & \begin{tabular}{l}
IDENTITY | !PROBIT | ! COMPLOGLOG][!TOTAL \(n\)] \\
Proportions or counts \([r]\) are indicated if !TOTAL specifies the variate containing the binomial totals. Proportions are assumed if no response value exceeds 1 . A binary variate \([0,1]\) is indicated if \(!\) TOTAL is unspecified. The expression for \(d\) on the left applies when \(y\) is proportions (or binary). The logit is the default link function. The variance on the underlying scale is \(\pi^{2} / 3 \sim 3.3\) (underlying logistic distribution) for the logit link.
\end{tabular} \\
\hline \[
\begin{aligned}
& !\text { POISSON [! LOGARITHM } \\
& v=\mu \\
& d=2(y \ln (y / \mu) \\
& \quad-(y-\mu))
\end{aligned}
\] & \begin{tabular}{l}
! IDENTITY | !SQRT] \\
Natural logarithms are the default link function. ASReml assumes the Poisson variable is not negative.
\end{tabular} \\
\hline \[
\begin{aligned}
& !\text { GAMMA } \quad \text { [! INVERSE } \\
& v=\mu^{2} /(\phi n) \\
& d=2 n\left(-\phi \ln \left(\frac{\phi y}{\mu}\right)\right. \\
& \left.+\frac{\phi y-\mu}{\mu}\right)
\end{aligned}
\] & \begin{tabular}{l}
! IDENTITY | !LOGARITHM][!PHI \(\phi\)][!TOTAL \(n\)] \\
The inverse is the default link function. \(n\) is defined with the !TOTAL qualifier and would be degrees of freedom in the typical application to mean-squares. The default value of \(\phi\) is 1 .
\end{tabular} \\
\hline \[
\begin{aligned}
& \text { !NEGBIN } \quad[!\text { LOGARITHM } \\
& \begin{array}{l}
v=\mu+\mu^{2} / \phi \\
d=2\left((\phi+y) \ln \left(\frac{\mu+\phi}{y+\phi}\right)\right. \\
\left.\quad+y \ln \left(\frac{y}{\mu}\right)\right)
\end{array}
\end{aligned}
\] & \begin{tabular}{l}
| ! IDENTITY | ! INVERSE] [!PHI \(\phi\)] \\
fits the Negative Binomial distribution. Natural logarithms are the default link function. The default value of \(\phi\) is 1 .
\end{tabular} \\
\hline
\end{tabular}

General qualifiers
! AOD
New
Caution
requests an Analysis of Deviance table be generated. This is formed by fitting a series of sub models for terms in the DENSE part building up to the full model, and comparing the deviances. An example if its use is LS !BIN !TOT COUNT !AOD ~ mu SEX GROUP
! AOD may not be used in association with PREDICT.
!DISP [\(h\)] includes an overdispersion scaling parameter \((h)\) in the weights. If !DISP is specified with no argument, ASReml estimates it as the residual variance of the working variable. Traditionally it is estimated from the deviance residuals, reported by ASReml as Variance heterogeneity.
An example if its use is
count !POIS !DISP \(\sim\) mu group
\begin{tabular}{|c|c|}
\hline & GLM qualifiers \\
\hline qualifier & action \\
\hline & \begin{tabular}{l}
is used especially with binomial data to include an offset in the model where \(o\) is the number or name of a variable in the data. The offset is only included in binomial and Poisson models (for Normal models just subtract the offset variable from the response variable), for example \\
count ! POIS !OFFSET base !DISP \(\sim\) mu group \\
The offset is included in the model as \(\boldsymbol{\eta}=\boldsymbol{X} \tau+o\). The offset will often be something like \(\ln (n)\). \\
is used especially with binomial data where \(n\) is the field containing the total counts for each sample. If omitted, count is taken as 1.
\end{tabular} \\
\hline \multicolumn{2}{|l|}{Residual qualifiers control the form of the residuals returned in the . yht file. The predicted values returned in the .yht file will be on the linear predictor scale if the !WORK or ! PVW qualifiers are used. They will be on the observation scale if the !DEVIANCE, ! PEARSON, !RESPONSE or ! PVR qualifiers are used.} \\
\hline !DEVIANCE & produces deviance residuals, the signed square root of \(d / h\) from Table 6.4 where \(h\) is the dispersion parameter controlled by the !DISP qualifier. This is the default. \\
\hline !PEARSON & writes Pearson residuals, \(\frac{y-\mu}{\sqrt{v}}\), in the .yht file \\
\hline !PVR & writes fitted values on the response scale in the .yht file. This is the default. \\
\hline !PVW & writes fitted values on the linear predictor scale in the . yht file. \\
\hline !RESPONSE & produces simple residuals, \(y-\mu\) \\
\hline ! WORK & produces residuals on the linear predictor scale, \(\frac{y-\mu}{d \mu / d \eta}\) \\
\hline
\end{tabular}

\subsection*{6.9 Generalized Linear Mixed Models}

\section*{This section was written by Damian Collins}

There is the capacity to fit a wider class of models which include additional random effects for non-normal error distributions. The inclusion of random terms in a GLM is usually referred to as a Generalized Linear Mixed Model (GLMM). For GLMMs, ASReml uses what is commonly referred to as penalized quasi-
likelihood or PQL (Breslow and Clayton, 1993). The technique is also known by other names, including Schall's technique (Schall, 1991), pseudo-likelihood (Wolfinger and O'Connell, 1993) and joint maximisation (Harville and Mee, 1984, Gilmour et al., 1985). It is implemented in many statistical packages, for instance, in the GLMM procedure (Welham, 2005) and the IRREML procedure of Genstat (Keen, 1994), in MLwiN (Goldstein et al., 1998), in the GLMMIXED macro in SAS and in the GLMMPQL function in R , to name a few.

The PQL technique is based on a first order Taylor series approximation to the likelihood. It has been shown to perform poorly for certain types of GLMMs. In particular, for binary GLMMs where the number of random effects is large compared to the number of observations, it can underestimate the variance components severely (\(50 \%\)) (e.g. Breslow and Lin, 1995, Goldstein and Rasbash, 1996, Rodriguez and Goldman, 2001, Waddington et al., 1994). For other types of GLMMs, such as Poisson data with many observations per random effect, it has been reported to perform quite well (e.g. Breslow, 2003). As well as the above references, users can consult McCulloch and Searle (2001) for more information about GLMMs.

Most studies investigating PQL have focussed on estimation bias. Much less attention has been given to the wider inferential issues such as hypothesis testing. In addition, the performance of this technique has only been assessed on a small set of relatively simple GLMMs. Anecdotal evidence from users suggests that this technique can give very misleading results in certain situations.

Therefore we cannot recommend the use of this technique for general use. It is Caution included in the current version of ASReml for advanced users. It is highly recommended that its use be accompanied by some form of cross-validatory assessment for the specific dataset concerned. For instance, one way of doing this would be by simulating data using the same design and using parameter values similar to the parameter estimates achieved, such as used in Millar and Willis (1999).

The standard GLM Analysis of Deviance (!AOD) should not be used when there are random terms in the model as the variance components are reestimated for each submodel.

\subsection*{6.10 Missing values}

\section*{Missing values in the response}

It is sometimes computationally convenient to estimate missing values, for example, in spatial analysis of regular arrays, see example 3a in Section 7.3. Missing values are estimated if the model term mv is included in the model. Formally, mv creates a factor with a covariate for each missing value. The covariates are coded 0 except in the record where the particular missing value occurs, where it is coded -1.
```

NIN Alliance Trial }198
variety
row 22
column 11
nin89.asd !skip 1
yield ~ mu variety !r repl,
!f mv
1 2
11 column AR1 . }42
22 row AR1 . }90

```

The action when mv is omitted from the model depends on whether a univariate or multivariate analysis is being performed. For a univariate analysis, ASReml discards records which have a missing response. In multivariate analyses, all records are retained and the R matrix is modified to reflect the missing value pattern.

\section*{Missing values in the explanatory variables}

ASReml will abort the analysis if it finds missing values in the design matrix unless !MVINCLUDE or !MVREMOVE is specified, see Section 5.8. !MVINCLUDE causes the missing value to be treated as a zero. !MVREMOVE causes ASReml to discard the whole record. Records with missing values in particular fields can be explicitly dropped using the ! D transformation, Table 5.1.

Covariates: Treating missing values as zero in covariates is usually only sensible if the covariate is centred (has mean of zero).

Design factors: Where the factor level is zero (or missing and the !MVINCLUDE qualifier is specified), no level is assigned to the factor for that record.

\subsection*{6.11 Some technical details about model fitting in ASReml}

\section*{Sparse versus dense}

ASReml partitions the terms in the linear model into two parts: a dense set and a sparse set. The partition is at the !r point unless explicitly set with
the !DENSE data line qualifier or mv is included before \(!\mathrm{r}\), see Table 5.5. The special term mv is always included in sparse. Thus random and sparse terms are estimated using sparse matrix methods which result in faster processing. The inverse coefficient matrix is fully formed for the terms in the dense set. The inverse coefficient matrix is only partially formed for terms in the sparse set. Typically, the sparse set is large and sparse storage results in savings in memory and computing. A consequence is that the variance matrix for estimates is only available for equations in the dense portion.

\section*{Ordering of terms in ASReml}

The order in which estimates for the fixed and random effects in linear mixed model are reported will usually differ from the order the model terms are specified. Solutions to the mixed model equations are obtained using the methods outlined Gilmour et al., 1995. ASReml orders the equations in the sparse part to maintain as much sparsity as it can during the solution. After absorbing them, it absorbs the model terms associated with the dense equations in the order specified.

\section*{Aliassing and singularities}

A singularity is reported in ASReml when the diagonal element of the mixed model equations is effectively zero (see the !TOLERANCE qualifier) during absorption. It indicates there is either
- no data for that fixed effect, or
- a linear dependence in the design matrix means there is no information left to estimate the effect.

ASReml handles singularities by using a generalized inverse in which the singular row/column is zero and the associated fixed effect is zero. Which equations are singular depends on the order the equations are processed. This is controlled by ASReml for the sparse terms but by the user for the dense terms. They should be specified with main effects before interactions so that the ANOVA table has correct marginalization. Since ASReml processes the dense terms from the bottom up, the first level (the last level processed) is often singular.

The number of singularities is reported in the .asr file immediately prior to the REML log-likelihood (LogL) line for that iteration (see Section 13.3). The effects (and associated standard or prediction error) which correspond to these singularities are zero in the .sln file.

Warning Singularities in the sparse_fixed terms of the model may change with changes in the random terms included in the model. If this happens it will mean that changes in the REML log-likelihood are not valid for testing the changes made to the random model. This situation is not easily detected as the only evidence will be in the .sln file where different fixed effects are singular. A likelihood ratio test is not valid if the fixed model has changed.

\section*{Examples of aliassing}

The sequence of models in Table 6.5 are presented to facilitate an understanding of over-parameterised models. It is assumed that var is a factor with 4 levels, trt with 3 levels and rep with 3 levels and that all var.trt combinations are present in the data.

Table 6.5: Examples of aliassing in ASReml
\begin{tabular}{lll}
\hline model & \begin{tabular}{l}
number of \\
singularities
\end{tabular} & \begin{tabular}{l}
order of fitting
\end{tabular} \\
\hline yield \(\sim\) var !r rep & 0 & rep var \\
yield \(\sim\) mu var !r rep & 1 & \begin{tabular}{l}
rep mu var \\
first level of var is aliassed and set to \\
zero
\end{tabular} \\
yield \(\sim\) var trt !r rep & 1 & \begin{tabular}{l}
rep var trt \\
var fully fitted, first level of trt is \\
aliassed and set to zero
\end{tabular} \\
yield \(\sim\) mu var trt, \\
var.trt !r rep mu var trt var.trt
\end{tabular}

\subsection*{6.12 Analysis of variance table}

The ANOVA table has 4 forms:
\begin{tabular}{llllll}
Source & DF & & F_inc & & \\
Source & DF & & F_inc & F_con M & \\
Source & DF & DDF_inc & F_inc & & P_inc \\
Source & DF & DDF_con & F_inc & F_con M & P_con
\end{tabular}
depending on whether conditional F-statistics are reported (requested by the ! FCON qualifier) and whether the denominator degrees of freedom are reported. ASReml always reports incremental F-statistics (F_inc) for the fixed model terms (in the DENSE partition) conditional in the order the terms were nominated in the model. Users should study Section 2.6 to understand the contents of this table. The 'conditional maximum' model used as the basis for the conditional F-statistic is spelt out in the .aov file described in section .

The numerator degrees of freedom for each term is easily determined as the number of non-singular equations involved in the term. However, in general, calculation of the denominator degrees of freedom is not trivial. ASReml will by default attempt the calculation for small analyses, by one of two methods. In larger analyses, users can request the calculation be attempted using the !DDF qualifier (page 68). Use !DDF -1 to prevent the calculation.
Introduction
Non-singular variance matrices
Variance model specification in ASReml
A sequence of structures for the NIN data

\section*{Variance structures}
General syntax
Variance header line
R structure definition
\(G\) structure header and definition lines
Variance model description
Forming variance models from correlation models
Additional notes of variance models
Variance structure qualifiers
Rules for combining variance models G structures involving more than one random term
Constraining variance parameters
Parameter constraint within a variance model
Constraints between and within variance models
Model building using the ! CONTINUE qualifier 105

\subsection*{7.1 Introduction}

The subject of this chapter is variance model specification in ASReml. ASReml allows a wide range of models to be fitted. The key concepts you need to understand are
- the mixed linear model \(\boldsymbol{y}=\boldsymbol{X} \boldsymbol{\tau}+\boldsymbol{Z} \boldsymbol{u}+\boldsymbol{e}\) has a residual term \(\boldsymbol{e} \sim N(\mathbf{0}, \boldsymbol{R})\) and random effects \(\boldsymbol{u} \sim N(\mathbf{0}, \boldsymbol{G})\),
- we use the terms R structure and G structure to refer to the independent blocks of R and G respectively,
- R and G structures are typically formed as a direct product of particular variance models,
- the order of terms in a direct product must agree with the order of effects in the corresponding model term,
- variance models may be correlation matrices or variance matrices with equal or unequal variances on the diagonal. A model for a correlation matrix (eg. AR1) can be converted to an equal variance form (eg. AR1V) and to a heterogeneous variance form (eg. AR1H),
- variances are sometimes estimated as variance ratios (relative to the residual variance).
These issues are fully discussed in Chapter 2. In this chapter we begin by considering an ordered sequence of variance structures for the NIN variety trial (see Section 7.3). This is to introduce variance modelling in practice. We then present the topics in detail.

\section*{Non singular variance matrices}

When undertaking the REML estimation, ASReml needs to invert each variance matrix. For this it requires that the matrices be negative definite or positive definite. They must not be singular. Negative definite matrices will have negative elements on the diagonal of the matrix and/or its inverse. The exception is the XFA model which has been specifically designed to fit singular matrices (Thompson et al. 2003).

Let \(\boldsymbol{x}^{\prime} \boldsymbol{A} \boldsymbol{x}\) represent an arbitrary quadratic form for \(\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)^{\prime}\). The quadratic form is said to be nonnegative definite if \(\boldsymbol{x}^{\prime} \boldsymbol{A} \boldsymbol{x} \geq \mathbf{0}\) for all \(\boldsymbol{x} \in \boldsymbol{R}^{n}\). If \(\boldsymbol{x}^{\prime} \boldsymbol{A} \boldsymbol{x}\) is nonnegative definite and in addition the null vector \(\mathbf{0}\) is the only value of \(\boldsymbol{x}\) for which \(\boldsymbol{x}^{\prime} \boldsymbol{A} \boldsymbol{x}=\mathbf{0}\), then the quadratic form is said to be positive definite. Hence the matrix \(\boldsymbol{A}\) is said to be positive definite if \(\boldsymbol{x}^{\prime} \boldsymbol{A} \boldsymbol{x}\) is positive definite, see Harville (1997), pp 211.

\subsection*{7.2 Variance model specification in ASReml}

The variance models are specified in the ASReml command file after the model line, as shown in the code box. In this case just one variance model is specified (for replicates, see model 2b below for details). predict and tabulate lines may appear after the model line and before the first variance structure line. These are described in Chapter 10.
```

NIN Alliance Trial }198
variety !A
\vdots
column 11
nin89.asd !skip 1
yield ~ mu variety !r repl
0 0 1
repl 1
repl 0 IDV 0.1

```

Table 7.3 presents the full range of variance models available in ASReml. The identifiers for specifying the individual variance models in the command file are described in Section 7.5 under Specifying variance models in ASReml. Many of the models are correlation models. However, these are generalized to homogeneous variance models by appending \(V\) to the base identifier. They are generalized to heterogeneous variance models by appending H to the base identifier.

\subsection*{7.3 A sequence of structures for the NIN data}

Eight variance structures of increasing complexity are now considered for the NIN field trial data (see Chapter 3 for an introduction to these data). This is to give a feel for variance modelling in ASReml and some of the models that are possible.

See Section 2.1 Before proceeding, it is useful to link this section to the algebra of Chapter 2. In this case the mixed linear model is
\[
\boldsymbol{y}=\boldsymbol{X} \boldsymbol{\tau}+\boldsymbol{Z} \boldsymbol{u}+e
\]
where \(\boldsymbol{y}\) is the vector of yield data, \(\boldsymbol{\tau}\) is a vector of fixed variety effects but would also include fixed replicate effects in a simple RCB analysis and might also include fixed missing value effects when spatial models are considered, \(\boldsymbol{u} \sim N(\mathbf{0}, \boldsymbol{G})\) is a vector of random effects (for example, random replicate effects) and the errors are in \(\boldsymbol{e} \sim N(\mathbf{0}, \boldsymbol{R})\). The focus of this discussion is on
- changes to \(\boldsymbol{u}\) and \(\boldsymbol{e}\) and the assumptions about these terms,
- the impact this has on the specification of the G structures for \(\boldsymbol{u}\) and the R structures for \(\boldsymbol{e}\).

\section*{1 Traditional randomised complete block (RCB) analysis}

The only random term in a traditional RCB analysis of these data is the (residual) error term \(\boldsymbol{e} \sim N\left(\mathbf{0}, \sigma_{e}^{2} \boldsymbol{I}_{224}\right)\). The model therefore involves just one R structure and no G structures (\(\boldsymbol{u}=\mathbf{0}\)). In ASReml
- the error term is implicit in the model and is not formally specified on the model line,
- the IID variance structure (\(\boldsymbol{R}=\sigma_{e}^{2} \boldsymbol{I}_{224}\)) is the default for error.
```

NIN Alliance Trial }198
variety !A
id
pid
raw
repl 4
row 22
column 11
nin89.asd !skip 1
yield ~ mu variety repl

```

Important The error term is always present in the model but its variance structure does not need to be formally declared when it has the default IID structure.

\section*{2a Random effects RCB analysis}

The random effects RCB model has 2 random terms to indicate that the total variation in the data is comprised of 2 components, a random replicate effect \(\boldsymbol{u}_{r} \sim N\left(\mathbf{0}, \gamma_{r} \sigma_{e}^{2} \boldsymbol{I}_{4}\right)\) where \(\gamma_{r}=\sigma_{r}^{2} / \sigma_{e}^{2}\), and error as in \(\mathbf{1}\). This model involves both the original implicit IID R structure and an implicit IID G structure for the random replicates. In ASReml
- IID variance structure is the default for ran-
```

NIN Alliance Trial }198

```
NIN Alliance Trial }198
variety !A
variety !A
id
id
pid
pid
raw
raw
repl 4
repl 4
row 22
row 22
column 11
column 11
nin89.asd !skip 1
nin89.asd !skip 1
yield ~ mu variety !r repl
yield ~ mu variety !r repl
raw
```

raw

```
dom terms in the model.
For this reason the only change to the former command file is the insertion of \(!r\) before repl. Important All random terms (other than error which is implicit) must be written after ! r in the model specification line(s).

\section*{2b Random effects RCB analysis with a G structure specified}

This model is equivalent to \(\mathbf{2 a}\) but we explicitly specify the G structure for repl, that is, \(\boldsymbol{u}_{r} \sim N\left(\mathbf{0}, \gamma_{r} \sigma_{e}^{2} \boldsymbol{I}_{4}\right)\), to introduce the syntax.
See Section 7.4 The 001 line is called the variance header line. In general, the first two elements of this line refer to the R structures and the third element is the number of \(G\) structures. In this case 00 tells ASReml that there are no explicit R structures but there is one G structure
(1). The next two lines define the \(G\) structure. The first line, a \(G\) structure header line, links the structure that follows to a term in the lin-
```

NIN Alliance Trial }198
variety !A
id
pid
raw
repl 4
row 22
column 11
nin89.asd !skip 1
yield ~ mu variety !r repl
0 0 1
repl 1
4 0 IDV 0.1

``` ear model (repl) and indicates that it involves one variance model (1) (a 2 would mean that the structure was the direct product of two variance models). The second line tells ASReml that the variance model for replicates is IDV of order \(4\left(\sigma_{r}^{2} I_{4}\right)\). The 0.1 is a starting value for \(\gamma_{r}=\sigma_{r}^{2} / \sigma_{e}^{2}\); a starting value must be specified. Finally, the second element ( 0 ) on the last line of the file indicates that the effects are in standard order. There is almost always a 0 (no sorting) in this position for G structures. The following points should be noted:
- the 4 on the final line could have been written as repl to give
repl 0 IDV 0.1
This would tell ASReml that the order or dimension of the IDV variance model is equal to the number of levels in repl (4 in this case),
- when specifying G structures, the user should ensure that one scale parameter is present. ASReml does not automatically include and estimate a scale parameter for a G structure when the explicit G structure does not include one. For this reason
- the model supplied when the G structure involves just one variance model must not be a correlation model (all diagonal elements equal 1),
- all but one of the models supplied when the G structure involves more than one variance model must be correlation models; the other must be either an homogeneous or a heterogeneous variance model (see Section 7.5 for the distinction between these models; see also \(\mathbf{5}\) for an example),
- an initial value must be supplied for all parameters in G structure definitions. ASReml expects initial values immediately after the variance model identifier
or on the next line (0.1 directly after IDV in this case),
- 0 is ignored as an initial value on the model line,
- if there is no initial value after the identifier, ASReml will look on the next line,
- if ASReml does not find an initial value it will stop and give an error message in the .asr file,
- in this case \(\boldsymbol{V}=\sigma_{r}^{2} \boldsymbol{Z}_{r} \boldsymbol{Z}_{r}^{\prime}+\sigma_{e}^{2} \boldsymbol{I}_{224}\) which is fitted as \(\sigma_{e}^{2}\left(\gamma_{r} \boldsymbol{Z}_{r} \boldsymbol{Z}_{r}^{\prime}+\boldsymbol{I}_{224}\right)\) where \(\gamma_{r}\) is a variance ratio \(\left(\gamma_{r}=\sigma_{r}^{2} / \sigma_{e}^{2}\right)\) and \(\sigma_{e}^{2}\) is the scale parameter. Thus 0.1 is a reasonable initial value for \(\gamma_{r}\) regardless of the scale of the data.

\section*{3a Two-dimensional spatial model with spatial correlation in one direction}

This code specifies a two-dimensional spatial structure for error but with spatial correlation in the row direction only, that is, \(\boldsymbol{e} \sim\) \(N\left(\mathbf{0}, \sigma_{e}^{2} \boldsymbol{I}_{11} \otimes \boldsymbol{\Sigma}_{r}\left(\rho_{r}\right)\right)\). The variance header line tells ASReml that there is one R structure (1) which is a direct product of two variance models (2); there are no G structures (0). The next two lines define the components of the R structure. A structure definition line must be specified for each component. For \(\boldsymbol{V}=\sigma_{e}^{2} \boldsymbol{I}_{11} \otimes \boldsymbol{\Sigma}\left(\rho_{r}\right)\), the first matrix is an identity matrix of order 11 for columns (ID), the
```

NIN Alliance Trial }198
variety !A
id
pid
raw
repl 4
\vdots
row 22
column 11
nin89aug.asd !skip 1
yield ~ mu variety !f mv
120
11 column ID
22 row AR1 0.3

``` second matrix is a first order autoregressive correlation matrix of order 22 for rows (AR1) and the variance scale parameter \(\sigma_{e}^{2}\) is implicit. Note the following:
- placing column and row in the second position on lines 1 and 2 respectively tells ASReml to internally sort the data rows within columns before processing the job. This is to ensure that the data matches the direct product structure specified. If column and row were replaced with 0 in these two lines, ASReml would assume that the data were already sorted in this order (which is not true in this case),
- the 0.3 on line 2 is a starting value for the autoregressive row correlation. Note that for spatial analysis in two dimensions using a separable model, a complete matrix or array of plots must be present. To achieve this we augmented the data with the 18 records for the missing yields as shown on page 30 . In the

See Chapter 13
See Sections 6.3
and 6.11

See Sections 2.1
and 7.5

See Section 7.7
augmented data file the yield data for the missing plots have all been made NA (one of the missing value indicators in ASReml) and variety has been arbitrarily coded LANCER for all of the missing plots (any of the variety names could have been used),
- !f mv is now included in the model specification. This tells ASReml to estimate the missing values. The ! f before mv indicates that the missing values are fixed effects in the sparse set of terms,
- unlike the case with G structures, ASReml automatically includes and estimates a scale parameter for R structures \(\left(\sigma_{e}^{2}\right.\) for \(\boldsymbol{V}=\sigma_{e}^{2}\left(\boldsymbol{I}_{11} \otimes \boldsymbol{\Sigma}\left(\rho_{r}\right)\right)\) in this case). This is why the variance models specified for row (AR1) and column (ID) are correlation models. The user could specify a non-correlation model (diagonal elements \(\neq 1\)) in the R structure definition, for example, ID could be replaced by IDV to represent \(\boldsymbol{V}=\sigma_{e}^{2}\left(\sigma_{c}^{2} \boldsymbol{I}_{11}\right) \otimes \boldsymbol{\Sigma}\left(\rho_{r}\right)\). However, IDV would then need to be followed by ! \(\mathrm{S} 2==1\) to fix \(\sigma_{e}^{2}\) at 1 and prevent ASReml trying (unsuccessfully) to estimate both parameters as they are confounded: the scale parameter associated with IDV and the implicit error variance parameter, see Section 2.1 under Combining variance models. Specifically, the code
```

11 column IDV 48 !S2==1

```
would be required in this case, where 48 is the starting value for the variances. This complexity allows for heterogeneous error variance.

\section*{3b Two-dimensional separable autoregressive spatial model}

This model extends 3a by specifying a first order autoregressive correlation model of order 11 for columns (AR1). The R structure in this case is therefore the direct product of two autoregressive correlation matrices that is, \(\boldsymbol{V}=\sigma_{e}^{2} \boldsymbol{\Sigma}_{c}\left(\rho_{c}\right) \otimes \boldsymbol{\Sigma}_{r}\left(\rho_{r}\right)\), giving a twodimensional first order separable autoregressive spatial structure for error. The starting column correlation in this case is also 0.3 . Again note that \(\sigma_{e}^{2}\) is implicit.
```

NIN Alliance Trial 1989
variety !A
id
\vdots
row 22
column 11
nin89aug.asd !skip 1
yield ~ mu variety !f mv
120
11 column AR1 0.3
22 row AR1 0.3

```

\section*{3c Two-dimensional separable autoregressive spatial model with measurement error}

This model extends \(\mathbf{3 b}\) by adding a random units term. Thus
\(\boldsymbol{V}=\sigma_{e}^{2}\left(\gamma_{\eta} \boldsymbol{I}_{242}+\boldsymbol{\Sigma}_{c}\left(\rho_{c}\right) \otimes \boldsymbol{\Sigma}_{r}\left(\rho_{r}\right)\right)\). The reserved word units tells ASReml to construct an additional random term with one level for each experimental unit so that a second (independent) error term can be fitted. A units term is fitted in the model in cases like this, where a variance structure is applied to the errors. Because a G structure is not explic-
```

NIN Alliance Trial }198
variety !A
id
row 22
column 11
nin89aug.asd !skip 1
yield ~ mu variety !r units,
!f mv
120
11 column AR1 0.3
22 row AR1 0.3

``` itly specified here for units, the default IDV structure is assumed. The units term is often fitted in spatial models for field trial data to allow for a nugget effect.

\section*{4 Two-dimensional separable autoregressive spatial model with random replicate effects}

This is essentially a combination of \(\mathbf{2 b}\) and \(\mathbf{3 c}\) to demonstrate specifying an R structure and
See Section 7.4 a G structure in the same model. The variance header line 121 indicates that there is one \(R\) structure (1) that involves two variance models (2) and is therefore the direct product of two matrices, and there is one G structure (1). The R structures are defined first so the next two lines are the R structure definition lines for \(\boldsymbol{e}\), as in \(\mathbf{3 b}\). The last two lines are the G structure definition lines for repl, as in 2b. In this case \(\boldsymbol{V}=\sigma_{e}^{2}\left(\gamma_{r} I_{242}+\boldsymbol{\Sigma}_{c}\left(\rho_{c}\right) \otimes \boldsymbol{\Sigma}_{r}\left(\rho_{r}\right)\right)\).
```

NIN Alliance Trial }198
variety !A
id
row 22
column 11
nin89aug.asd !skip 1
yield ~ mu variety !r repl,
!f mv
1 2 1
11 column AR1 0.3
22 row AR1 0.3
repl 1
repl 0 IDV 0.1

```

\section*{5 Two-dimensional separable autoregressive spatial model defined as a G structure}

This model is equivalent to 3c but with the spatial model defined as a G structure rather than an \(R\) structure. As discussed in 2b,
- all but one of the models supplied when the G structure involves more than one variance model must be correlation models,
- the other model must not be a correlation model, that is, the other model must be either an homogeneous or a heterogeneous variance model, and an initial value for the
```

NIN Alliance Trial }198
variety !A
id
row 22
column 11
nin89.asd !skip 1
yield ~ mu variety,
!r row.column
O 01
row.column 2
row 0 AR1V 0.3 0.1
column 0 AR1 0.3

```
scale parameter must be supplied.

For this reason, the model for rows is now AR1V and an initial value of 0.1 has been supplied for the scale parameter. In this case \(\boldsymbol{V}=\sigma_{e}^{2}\left(\gamma_{r c} \boldsymbol{\Sigma}_{c}\left(\rho_{c}\right) \otimes \boldsymbol{\Sigma}_{r}\left(\rho_{r}\right)+I_{224}\right)\). Use of row. column as a \(G\) structure is a useful approach for analysing incomplete spatial arrays. This approach will often run faster for large trials but requires more memory.

Important Note that we have used the original version of the data and !f mv is omitted from this analysis since row.column is fitted as a G structure. If we had used the augmented data nin89aug.asd we would still omit !f mv and ASReml would discard the records with missing yield.

Table 7.1: Sequence of variance structures for the NIN field trial data
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \multirow[t]{3}{*}{ASReml syntax} & \multicolumn{3}{|l|}{extra random terms} & \multicolumn{3}{|l|}{residual error term} \\
\hline & & term & \multicolumn{2}{|l|}{G structure models} & \multirow[t]{2}{*}{term} & \multicolumn{2}{|l|}{R structure models} \\
\hline & & & 1 & 2 & & 1 & 2 \\
\hline 1 & yield \(\sim\) mu variety repl & - & - & & error & ID & - \\
\hline 2a & ```
yield ~ mu variety,
!r repl
``` & repl & IDV & & error & ID & - \\
\hline 2b & ```
yield ~ mu variety,
!r repl
O O 1
repl 1
40 IDV 0.1
``` & repl & IDV & & error & ID & - \\
\hline 3 a & ```
yield ~ mu variety,
!f mv
120
11 column ID
22 row AR1 0.3
``` & - & - & & column.row & ID & AR1 \\
\hline 3b & ```
yield ~ mu variety,
!f mv
120
11 column AR1 0.3
22 row AR1 0.3
``` & - & - & & column.row & AR1 & AR1 \\
\hline 3 c & ```
yield ~ mu variety,
!r units !f mv
120
11 column AR1 0.3
22 row AR1 0.3
``` & units & IDV & & column.row & AR1 & AR1 \\
\hline 4 & ```
yield ~ mu variety,
!r repl !f mv
121
11 column AR1 0.3
22 row AR1 0.3
repl 1
4 0 \text { IDV 0.1}
``` & repl & IDV & & column.row & AR1 & AR1 \\
\hline 5 & ```
yield ~ mu variety,
!r column.row
O 1
column.row 2
column 0 AR1 . 3
row 0 AR1V 0.3 0.1
``` & column.row & AR1 & AR1V & error & ID & - \\
\hline
\end{tabular}

\subsection*{7.4 Variance structures}

The previous sections have introduced variance modelling in ASReml using the NIN data for demonstration. In this and the remaining sections the syntax is described formally. However, where appropriate we continue to reference the example.

\section*{General syntax}

Variance model specification in ASReml has the following general form [variance header line
[ \(R\) structure definition lines ]
[ \(G\) structure header and definition lines ]
[variance parameter constraints ]]
- variance header line specifies the number of R and G structures,
- \(R\) structure definition lines define the R structures (variance models for error) as specified in the variance header line,
- G structure header and definition lines define the G structures (variance models for the additional random terms in the model) as specified in the variance header line; these lines are always placed after any R structure definition lines,
- variance parameter constraints are included if parameter constraints are to be imposed, see the !VCC \(c\) qualifier in Table 5.5 and Section 7.9 on constraints between and within variance structures.

A schematic outline of the variance model specification lines (variance header line, and R and G structure definition lines) is presented in Table 7.2 using the variance model of \(\mathbf{4}\) for demonstration.

Table 7.2: Schematic outline of variance model specification in ASReml


\section*{Variance header line}

The variance header line is of the form \([s[c[g]]\)
- \(s\) and \(c\) relate to the R structures, \(g\) is the number of G structures,
- the variance header line may be omitted if the default IID R structure is required, no \(G\) structures are being explicitly defined and there are no parameter constraints (see ! VCC and examples \(\mathbf{1}\) and 2a),
- \(s\) is used to code the number of independent sections in the error term
```

NIN Alliance Trial }198
variety !A
id
row 22
column 11
nin89aug.asd !skip 1
yield ~ mu variety !r repl,
!f mv
121
22 row AR1 0.3
11 column AR1 0.3
repl 1
repl 0 IDV 0.1

```
- if \(s=0\), the default IID R structure is assumed and no R structure definition lines are required (as in examples \(\mathbf{2 b}\) and \(\mathbf{5}\) ),
- if \(s>0, s \mathrm{R}\) structure definitions are required, one for each of the \(s\) sections (as in examples 3a, 3b, 3c and 4),
- for the analysis of multi-section data \(s\) can be replaced by the name of a factor with the appropriate number of levels, one for each section,
- \(c\) is the number of component variance models involved in the variance structure for the error term for each section; for example, 3a, 3b and 3c have column.row as the error term and the variance structure for column.row involves 2 variance models, the first for column and the second for row,
- \(c\) has a default value of 2 when \(s\) is not specified as zero,
- \(g\) is the number of variance structures (G structures) that will be explicitly specified for the random terms in the model.

R and G structures are now discussed with reference to \(s, c\) and \(g\). As already noted, each variance structure may involve several variance models which relate to the individual terms involved in the random effect or error. For example, a two factor interaction may have a variance model for each of the two factors

See Table 7.3
See Section 7.7 involved in the interaction. Variance models are listed in Table 7.3. As indicated in the discussion of \(\mathbf{2 b}\), care must be taken with respect to scale parameters when combining variance models (see also Section 7.7).

\section*{\(\mathbf{R}\) structure definition}

For each of the \(s\) sections there must be \(c \mathrm{R}\) structure definitions. Each definition may take several lines. Each R structure definition specifies a variance model and has the form
order [field model [initial_values] [qualifiers] [additional_initial_values]]
- order is either the number of levels in the corresponding term or the name of a factor that has the same number of levels as the term, for example,

11 column AR1 0.5
is equivalent to
column column AR1 0.5
```

NIN Alliance Trial }198
variety !A
row 22
column 11
nin89aug.asd !skip 1
yield ~ mu variety !r repl,
!f mv
121
11 column AR1 0.3
22 row AR1 0.3
repl 1
repl 0 IDV 0.1

```
when column is a factor with 11 levels,
- field is the name of the data field (variate or factor) that corresponds to the term and therefore indexes the levels of the term;
- ASReml uses this field to sort the units so they match the R structure,
- in the example the data will be sorted internally rows within columns for the analysis but the residuals will be printed in the .yht file in the original order (which is actually rows within columns in this case).
Important It is assumed that the joint indexing of the components uniquely defines the experimental units,
- if field is a variable, it can be plot coordinates provided the plots are in a regular grid. Thus in this example
```

11 lat AR1 0.3
22 long AR1 0.3

```
is valid because lat gives column position and long gives row position, and the positions are on a regular grid. The autoregressive correlation values will still be on an plot index basis \((1,2,3, \ldots)\), not on a distance basis ( 10 m , \(20 \mathrm{~m}, 30 \mathrm{~m}, \ldots\) ),
- if the data is sorted appropriately for the order the models are specified, set field to 0 ,
- model specifies the variance model for the term, for example,

22 row AR1 0.3
chooses a first order autoregressive model for the row error process,
- all the variance models available in ASReml are listed in Table 7.3,
- these models have associated variance parameters,
- a error variance component ( \(\sigma_{e}^{2}\) for the example, see Section 7.3) is automatically estimated for each section,
- the default model is ID,
- initial_values are initial or starting values for the variance parameters and must be supplied, for example,

\section*{22 row AR1 0.3}
chooses an autoregressive model for the row error process (see Table 7.1) with a starting value of 0.3 for the row correlation,
- qualifiers tell ASReml to modify the variance model in some way; the qualifiers are described in Table 7.4,
- additional_initial_values are read from the following lines if there are not enough initial values on the model line. Each variance model has a certain number of parameters. If insufficient non zero values are found on the model line ASReml expects to find them on the following line(s),
- initial values of 0.0 will be ignored if they are on the model line but are accepted on subsequent lines,
- the notation \(n * v\) (for example, \(5 * 0.1\) ) is permitted on subsequent lines (but not the model line) when there are \(n\) repeats of a particular initial value \(v\),
- only in a few specified cases is 0 permitted as an initial value of a non-zero parameter.

\section*{G structure header and definition lines}

There are \(g\) sets of G structure definition lines and each set is of the form model_term d
order [key model [initial_values] [qualifier] [additional_initial_values]]
order [key model [initial_values] [qualifier] [additional_initial_values]]
!
order [key model [initial_values] [qualifier] [additional_initial_values]]
- model_term is the term from the linear model to which the variance structure applies; the variance structure may cover additional terms in the linear model, see Section 7.8
```

NIN Alliance Trial 1989
variety !A
id
\vdots
column 11
nin89aug.asd !skip 1
yield ~ mu variety !r repl,
!f mv
1 2 1
22 row AR1 0.3
11 column AR1 0.3
repl 1
repl 0 IDV 0.1

```
- \(d\) is the number of variance models and hence direct product matrices involved in the G structure; the following lines define the \(d\) variance models,
- order is either the number of levels in the term or the name of a factor that has the same number of levels as the component,
- key is usually zero but for power models (EXP, GAU,...) provides the distance data needed to construct the model,
- model is the ASReml variance model identifier/acronym selected for the term,
- variance models are listed in Table 7.3,
- these models have associated variance parameters,
- initial_values are initial or starting values for the variance parameters, the values for initial values are as described above for R structure definition lines,
- qualifier tells ASReml to modify the variance model in some way; the qualifiers are described in Table 7.4.

\subsection*{7.5 Variance model description}

Table 7.3 presents the full range of variance models, that is, correlation, homogeneous variance and heterogeneous variance models available in ASReml. The table contains the model identifier, a brief description, its algebraic form and the number of parameters. The first section defines (BASE) correlation models and
in the next section we show how to extend them to form variance models. The second section defines some models parameterized as variance/covariance matrices rather than as correlation matrices. The third section covers some special cases where the covariance structure is known except for the scale.

Table 7.3: Details of the variance models available in ASReml
\begin{tabular}{lll}
\hline base & description & algebraic \\
form & number of parameters \({ }^{\dagger}\) \\
& & corr
\end{tabular} \begin{tabular}{l} 
homo's \\
variance
\end{tabular} \begin{tabular}{l} 
hetero's \\
variance
\end{tabular}

\section*{Correlation models}

\section*{One-dimensional, equally spaced}

ID

AR [1]
\(1^{s t}\) order
autoregressive
\(C_{i i}=1, C_{i j}=0, \quad i \neq j\)
0
1
\(C_{i i}=1, C_{i+1, i}=\phi_{1}\)
\(1 \quad 2\)
\(\omega\)
\(C_{i j}=\phi_{1} C_{i-1, j}, i>j+1\)
\(\left|\phi_{1}\right|<1\)

AR2
\(2^{n d}\) order
autoregressive

AR3
\(C_{i i}=1\),
\(C_{i+1, i}=\phi_{1} /\left(1-\phi_{2}\right)\)
\(C_{i j}=\phi_{1} C_{i-1, j}+\phi_{2} C_{i-2, j}, i>j+1\)
\(\left|\phi_{1}\right|<\left(1-\phi_{2}\right),\left|\phi_{2}\right|<1\)
\(C_{i i}=1, \Omega=1-\phi_{2}-\phi_{3}\left(\phi_{1}+\phi_{3}\right), \quad 3 \quad 4 \quad 3+\omega\)
\(C_{i+1, i}=\left(\phi_{1}+\phi_{2} \phi_{3}\right) / \Omega\),
\(C_{i+2, i}=\left(\phi_{1}\left(\phi_{1}+\phi_{3}\right)+\phi_{2}\left(1-\phi_{2}\right)\right) / \Omega\),
\(C_{i j}=\phi_{1} C_{i-1, j}+\phi_{2} C_{i-2, j}+\phi_{3} C_{i-3, j}, i>j+2\)
\(\left|\phi_{1}\right|<\left(1-\phi_{2}\right),\left|\phi_{2}\right|<1,\left|\phi_{3}\right|<1\)
SAR symmetric

SAR2
autoregressive
\(3^{\text {rd }}\) order autoregressive
constrained autoregressive 3 used for competition
\(C_{i i}=1\),
\(1 \quad 2\)
\(1+\omega\)
\(C_{i+1, i}=\phi_{1} /\left(1+\phi_{1}^{2} / 4\right)\)
\(C_{i j}=\phi_{1} C_{i-1, j}-\phi_{1}^{2} / 4 C_{i-2, j}\),
\(i>j+1\)
\(\left|\phi_{1}\right|<1\)
as for AR3 using
2
3
\(2+\omega\)
\(\phi_{1}=\gamma_{1}+2 \gamma_{2}\),
\(\phi_{2}=-\gamma_{2}\left(2 \gamma_{1}+\gamma_{2}\right)\),
\(\phi_{3}=\gamma_{1} \gamma_{2}^{2}\),

\section*{Details of the variance models available in ASReml}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
base \\
identifier
\end{tabular}} & \multirow[t]{2}{*}{description} & \multirow[t]{2}{*}{algebraic form} & \multicolumn{3}{|r|}{number of parameters \({ }^{\dagger}\)} \\
\hline & & & corr & homo's variance & hetero's variance \\
\hline MA [1] & \(1^{\text {st }}\) order moving average & \[
\begin{aligned}
& C_{i i}=1, \\
& C_{i+1, i}=-\theta_{1} /\left(1+\theta_{1}^{2}\right) \\
& C_{j i}=0, j>i+2 \\
& \left|\theta_{1}\right|<1
\end{aligned}
\] & 1 & 2 & \(1+\omega\) \\
\hline MA2 & \begin{tabular}{l}
\(2^{\text {nd }}\) order \\
moving average
\end{tabular} & \[
\begin{aligned}
& C_{i i}=1 \\
& C_{i+1, i}=-\theta_{1}\left(1-\theta_{2}\right) /\left(1+\theta_{1}^{2}+\theta_{2}^{2}\right) \\
& C_{i+2, i}=-\theta_{2} /\left(1+\theta_{1}^{2}+\theta_{2}^{2}\right) \\
& C_{j i}=0, j>i+2 \\
& \theta_{2} \pm \theta_{1}<1 \\
& \left|\theta_{1}\right|<1,\left|\theta_{2}\right|<1
\end{aligned}
\] & 2 & 3 & \(2+\omega\) \\
\hline ARMA & autoregressive moving average & \[
\begin{aligned}
& C_{i i}=1, \\
& C_{i+1, i}=(\theta-\phi)(1-\theta \phi) /(1+ \\
& \left.\theta^{2}-2 \theta \phi\right) \\
& C_{j i}=\phi C_{j-1, i}, j>i+1 \\
& |\theta|<1,|\phi|<1
\end{aligned}
\] & 2 & 3 & \(2+\omega\) \\
\hline CORU & uniform correlation & \(C_{i i}=1, C_{i j}=\phi, i \neq j\) & 1 & 2 & \(1+\omega\) \\
\hline CORB & banded correlation & \[
\begin{aligned}
& C_{i i}=1 \\
& C_{i+j, i}=\phi_{j}, 1 \leq j \leq \omega-1 \\
& \left|\phi_{j}\right|<1
\end{aligned}
\] & \(\omega-1\) & \(\omega\) & \(2 \omega-1\) \\
\hline CORG & general correlation CORGH \(=\) US & \[
\begin{aligned}
& C_{i i}=1 \\
& C_{i j}=\phi_{i j}, \quad i \neq j \\
& \left|\phi_{i j}\right|<1
\end{aligned}
\] & \(\frac{\omega(\omega-1)}{2}\) & \(\frac{\omega(\omega-1)}{2}+1\) & \[
\begin{aligned}
& \frac{\omega(\omega-1)}{2} \\
& +\omega
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{One-dimensional unequally spaced}
EXP
exponential
\(C_{i i}=1\)
1
2
\(1+\omega\)
\(C_{i j}=\phi^{\left|x_{i}-x_{j}\right|}, i \neq j\)
\(x_{i}\) are coordinates
\(0<\phi<1\)

\section*{Details of the variance models available in ASReml}
\begin{tabular}{lll}
\hline \begin{tabular}{l} 
base \\
identifier
\end{tabular} & description & \begin{tabular}{l} 
algebraic \\
form
\end{tabular} \\
GAU & gaussian & \begin{tabular}{l}
\(C_{i i}=1\) \\
\(C_{i j}=\phi^{\left(x_{i}-x_{j}\right)^{2}}, i \neq j\) \\
\(x_{i}\) are coordinates \\
\(0<\phi<1\)
\end{tabular} \\
\hline
\end{tabular}

Two-dimensional irregularly spaced
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & & \begin{tabular}{l}
\(\boldsymbol{x}\) and \(\boldsymbol{y}\) vectors of coordinates
\[
\theta_{i j}=\min \left(d_{i j} / \phi_{1}, 1\right)
\] \\
\(d_{i j}\) is euclidean distance
\end{tabular} & & & \\
\hline & IEXP & isotropic exponential & \[
\begin{aligned}
& C_{i i}=1 \\
& C_{i j}=\phi^{\left|x_{i}-x_{j}\right|+\left|y_{i}-y_{j}\right|}, i \neq j \\
& 0<\phi<1
\end{aligned}
\] & 1 & 2 & \(1+\omega\) \\
\hline & IGAU & \begin{tabular}{l}
isotropic \\
gaussian
\end{tabular} & \[
\begin{aligned}
& C_{i i}=1 \\
& C_{i j}=\phi^{\left(x_{i}-x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2}}, i \neq j \\
& 0<\phi<1
\end{aligned}
\] & 1 & 2 & \(1+\omega\) \\
\hline & IEUC & isotropic euclidean & \[
\begin{aligned}
& C_{i i}=1 \\
& C_{i j}=\phi^{\sqrt{\left(x_{i}-x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2}}}, i \neq j \\
& 0<\phi<1
\end{aligned}
\] & 1 & 2 & \(1+\omega\) \\
\hline New & LVR & linear variance & \[
\begin{aligned}
& C_{i j}=\left(1-\theta_{i j}\right) \\
& 0<\phi_{1}
\end{aligned}
\] & 1 & 2 & \(1+\omega\) \\
\hline New & SPH & spherical & \[
\begin{aligned}
& C_{i j}=1-\frac{3}{2} \theta_{i j}+\frac{1}{2} \theta_{i j}^{3} \\
& 0<\phi_{1}
\end{aligned}
\] & 1 & 2 & \(1+\omega\) \\
\hline New & CIR & \begin{tabular}{l}
circular (Web- \\
ster \& Oliver, 2001, p 113)
\end{tabular} & \[
\begin{aligned}
& C_{i j}=1 \\
& \quad-\frac{2}{\pi}\left(\theta_{i j} \sqrt{1-\theta_{i j}^{2}}+\sin ^{-1} \theta_{i j}\right) \\
& 0<\phi_{1}
\end{aligned}
\] & 1 & 2 & \(1+\omega\) \\
\hline & AEXP & anisotropic exponential & \[
\begin{aligned}
& C_{i i}=1 \\
& C_{i j}=\phi_{1}^{\left|x_{i}-x_{j}\right|} \phi_{2}^{\left|y_{i}-y_{j}\right|} \\
& 0<\phi_{1}<1,0<\phi_{2}<1
\end{aligned}
\] & 2 & 3 & \(2+\omega\) \\
\hline
\end{tabular}

\section*{Details of the variance models available in ASReml}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{base identifier} & \multirow[t]{2}{*}{description} & \multirow[t]{2}{*}{algebraic form} & \multicolumn{3}{|r|}{number of parameters \({ }^{\dagger}\)} \\
\hline & & & corr & homo's variance & hetero's variance \\
\hline AGAU & anisotropic gaussian & \[
\begin{aligned}
& C_{i i}=1 \\
& C_{i j}=\phi_{1}^{\left(x_{i}-x_{j}\right)^{2}} \phi_{2}^{\left(y_{i}-y_{j}\right)^{2}} \\
& 0<\phi_{1}<1,0<\phi_{2}<1
\end{aligned}
\] & 2 & 3 & \(2+\omega\) \\
\hline MAT \(k\) & Matérn with first \(1 \leq k \leq 5\) parameters specified by the user & \[
\begin{aligned}
& C_{i j}=\text { Matérn: see text } \\
& \phi>0 \text { range, } \nu \text { shape }(0.5) \\
& \delta>0 \text { anisotropy ratio(1), } \\
& \alpha \text { anisotropy angle(0), } \\
& \lambda(1 \mid 2) \text { metric }(2)
\end{aligned}
\] & \(k\) & \(k+1\) & \(k+\omega\) \\
\hline
\end{tabular}

\section*{Additional heterogeneous variance models}
\begin{tabular}{|c|c|c|c|c|c|}
\hline DIAG & diagonal \(=\) IDH & \(\boldsymbol{\Sigma}_{i i}=\phi_{i} \boldsymbol{\Sigma}_{i j}=0, i \neq j\) & - & - & \(\omega\) \\
\hline US & unstructured general covariance matrix & \(\boldsymbol{\Sigma}_{i j}=\phi_{i j}\) & - & - & \(\frac{\omega(\omega+1)}{2}\) \\
\hline OWN \(k\) & \begin{tabular}{l}
user explicitly \\
forms \(\boldsymbol{V}\) and \(\partial \boldsymbol{V}\)
\end{tabular} & & - & - & \(k\) \\
\hline ANTE [1]
ANTE \(k\) & \[
\begin{aligned}
& 1^{s t} \quad k \quad \text { order } \\
& k^{t h} \quad \begin{array}{l}
\text { antede- } \\
\text { pendence }
\end{array} \\
& 1 \leq k \leq \omega-1
\end{aligned}
\] & \[
\begin{aligned}
& \boldsymbol{\Sigma}^{-1}=\boldsymbol{U} \boldsymbol{D}^{\prime} \\
& D_{i i}=d_{i}, D_{i j}=0, i \neq j \\
& U_{i i}=1, U_{i j}=u_{i j}, 1 \leq j-i \leq k \\
& \boldsymbol{U}_{i j}=0, i>j
\end{aligned}
\] & - & - & \(\frac{\omega(\omega+1)}{2}\) \\
\hline CHOL [1]
CHOL \(k\) & \[
\begin{array}{cc}
\begin{array}{c}
1^{\text {st }} \\
k^{\text {th }}
\end{array} \quad \begin{array}{l}
k \\
\text { cholesky } \\
\text { (banded }
\end{array} \\
& \begin{array}{l}
\text { form) }
\end{array} \\
1 \leq k \leq \omega-1
\end{array}
\] & \[
\begin{aligned}
& \boldsymbol{\Sigma}=L \boldsymbol{D} L^{\prime} \\
& D_{i i}=d_{i}, D_{i j}=0, i \neq j \\
& L_{i i}=1, L_{i j}=l_{i j}, 1 \leq i-j \leq k \\
& \quad L_{i j}=0, i-j>k
\end{aligned}
\] & - & - & \(\frac{\omega(\omega+1)}{2}\) \\
\hline \begin{tabular}{l}
CHOL[1]C \\
CHOL \(k\) C
\end{tabular} & \[
\begin{array}{cc}
\begin{array}{c}
1^{\text {st }} \\
k^{\text {th }}
\end{array} \quad \begin{array}{l}
k \text { order } \\
\text { cholesky }
\end{array} \\
& \begin{array}{l}
\text { (column } \\
\text { form) }
\end{array} \\
1 \leq k \leq \omega-1
\end{array}
\] & \[
\begin{aligned}
& \boldsymbol{\Sigma}=L \boldsymbol{D} L^{\prime} \\
& D_{i i}=d_{i}, D_{i j}=0, i \neq j \\
& L_{i i}=1, L_{i j}=l_{i j}, 1 \leq j<i \\
& \quad L_{i j}=0 ., k+1 \leq j<i
\end{aligned}
\] & - & - & \(\frac{\omega(\omega+1)}{2}\) \\
\hline
\end{tabular}

\section*{Details of the variance models available in ASReml}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{base identifier} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{description}} & \multirow[t]{2}{*}{algebraic form} & \multicolumn{3}{|r|}{number of parameters \({ }^{\dagger}\)} \\
\hline & & & & corr & homo's variance & hetero's variance \\
\hline \begin{tabular}{l}
FA[1] \\
FA \(k\)
\end{tabular} & \[
\begin{aligned}
& 1_{k^{t h}} \\
& k^{s t}
\end{aligned}
\] & \(k\) order factor analytic & \begin{tabular}{l}
\[
\begin{aligned}
& \boldsymbol{\Sigma}=\boldsymbol{D} \boldsymbol{C} \boldsymbol{D} \\
& \boldsymbol{C}=\boldsymbol{F} \boldsymbol{F}^{\prime}+\boldsymbol{E},
\end{aligned}
\] \\
\(\boldsymbol{F}\) contains \(k\) correlation factors \\
\(\boldsymbol{E}\) diagonal
\[
\boldsymbol{D} \boldsymbol{D}=\operatorname{diag}(\boldsymbol{\Sigma})
\]
\end{tabular} & - & - & \[
\begin{aligned}
\omega & +\omega \\
k \omega & +\omega
\end{aligned}
\] \\
\hline \begin{tabular}{l}
FACV [1] \\
FACV \(k\)
\end{tabular} & \[
\begin{aligned}
& 1_{k^{t h}}^{s t}
\end{aligned}
\] & \(k \quad\) order factor analytic covariance form & \begin{tabular}{l}
\[
\boldsymbol{\Sigma}=\boldsymbol{\Gamma} \boldsymbol{\Gamma}^{\prime}+\boldsymbol{\Psi}
\] \\
\(\boldsymbol{\Gamma}\) contains covariance factors \\
\(\Psi\) contains specific variance
\end{tabular} & - & - & \[
\begin{aligned}
\omega & +\omega \\
k \omega & +\omega
\end{aligned}
\] \\
\hline \begin{tabular}{l}
\(\mathrm{XFA}[1]\) \\
XFA \(k\)
\end{tabular} & \[
\begin{aligned}
& 1^{\text {st }} \\
& k^{t h}
\end{aligned}
\] & \begin{tabular}{l}
\(k\) order \\
extended \\
factor \\
analytic \\
covariance \\
form
\end{tabular} & \begin{tabular}{l}
\[
\boldsymbol{\Sigma}=\boldsymbol{\Gamma} \boldsymbol{\Gamma}^{\prime}+\boldsymbol{\Psi}
\] \\
\(\boldsymbol{\Gamma}\) contains covariance factors \\
\(\Psi\) contains specific variance
\end{tabular} & - & - & \[
\begin{array}{r}
\omega+\omega \\
k \omega+\omega
\end{array}
\] \\
\hline
\end{tabular}

\section*{Inverse relationship matrices \({ }^{\ddagger}\)}
\begin{tabular}{lllll} 
AINV & inverse relationship matrix derived from pedigree & 0 & 1 & - \\
GIV1 & generalized inverse number 1 & 0 & 1 & - \\
\(\vdots\) & \(\vdots\) & \(\vdots\) & \(\vdots\) & \\
GIV6 & generalized inverse number 6 & 0 & 1 & -
\end{tabular}

\footnotetext{
\({ }^{\dagger}\) This is the number of values the user must supply as initial values where \(\omega\) is the dimension of the matrix. The homogeneous variance form is specified by appending V to the correlation basename; the heterogeneous variance form is specified by appending \(H\) to the correlation basename
\({ }^{\ddagger}\) These must be associated with 1 variance parameter unless used in direct product with another structure which provides the variance.
}

\section*{Forming variance models from correlation models}

The base identifiers presented in the first part of Table 7.3 are used to specify the correlation models. The corresponding homogeneous and heterogeneous variance models are specified by appending V and H to the base identifiers respectively. This convention holds for most models. However, no V or H should be appended to the base identifiers for the heterogeneous variance models at the end of the table (from DIAG on).

In summary, to specify
- a correlation model, provide the base identifier given in Table 7.3, for example EXP . 1
is an exponential correlation model,
- an homogeneous variance model, append a V to the base identifier and provide an additional initial value for the variance, for example,

EXPV . 1 . 3
is an exponential variance model,
- a heterogeneous variance model, append an H to the base identifier and provide additional initial values for the diagonal variances, for example,

CORUH . 1 . 3 . 4 . 2
is a \(3 \times 3\) matrix with uniform correlations of 0.1 and heterogeneous variances \(0.3,0.4\) and 0.2 .

Important See Section 7.7 for rules on combining variance models and important notes regarding initial values.

The algebraic forms of the homogeneous and heterogeneous variance models are determined as follows. Let \(\boldsymbol{C}^{(\omega \times \omega)}=\left[C_{i j}\right]\) denote the correlation matrix for a particular correlation model. If \(\boldsymbol{\Sigma}^{(\omega \times \omega)}\) is the corresponding homogeneous variance matrix then
\[
\boldsymbol{\Sigma}=\sigma^{2} \boldsymbol{C} .
\]

It has just one more parameter than the correlation model. For example, the homogeneous variance model corresponding to the ID correlation model has variance matrix \(\boldsymbol{\Sigma}=\sigma^{2} I_{\omega}\) (specified IDV in the ASReml command file, see below) and one parameter. The initial values for the variance parameters are listed after the initial values for the correlation parameters. For example, in

AR1V 0.30 .5
0.3 is the initial spatial correlation parameter and 0.5 is the initial variance parameter value.

Similarly, if \(\boldsymbol{\Sigma}_{h}^{(\omega \times \omega)}\) is the heterogeneous variance matrix corresponding to \(\boldsymbol{C}\), then
\[
\Sigma_{h}=D C D
\]
where \(\boldsymbol{D}^{(\omega \times \omega)}=\operatorname{diag}\left(\sigma_{i}\right)\). In this case there are an additional \(\omega\) parameters. For example, the heterogeneous variance model corresponding to ID is specified IDH in the ASReml command file (see below), involves the \(\omega\) parameters \(\sigma_{1}^{2} \ldots \sigma_{\omega}^{2}\) and is the variance matrix
\[
\boldsymbol{\Sigma}_{h}=\left[\begin{array}{llll}
\sigma_{1}^{2} & 0 & \ldots & 0 \\
0 & \sigma_{2}^{2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & \sigma_{\omega}^{2}
\end{array}\right]
\]

\section*{Notes on the variance models}

These notes provide additional information on the variance models defined in Table 7.3.
- the IDH and DIAG models fit the same diagonal variance structure,
- the CORGH and US models fit the same completely general variance structure parameterized differently,
- in CHOL \(k\) models \(\boldsymbol{\Sigma}=\boldsymbol{L} \boldsymbol{D L}^{\prime}\) where \(\boldsymbol{L}\) is lower triangular with ones on the diagonal, \(\boldsymbol{D}\) is diagonal and \(k\) is the number of non-zero off diagonals in \(\boldsymbol{L}\),
- in CHOLkC models \(\boldsymbol{\Sigma}=\boldsymbol{L} \boldsymbol{D} \boldsymbol{L}^{\prime}\) where \(\boldsymbol{L}\) is lower triangular with ones on the diagonal, \(\boldsymbol{D}\) is diagonal and \(k\) is the number of non-zero sub diagonal columns in \(\boldsymbol{L}\). This is somewhat similar to the factor analytic model.
- in ANTE \(k\) models \(\boldsymbol{\Sigma}^{-1}=\boldsymbol{U} \boldsymbol{D} \boldsymbol{U}^{\prime}\) where \(\boldsymbol{U}\) is upper triangular with ones on the diagonal, \(\boldsymbol{D}\) is diagonal and \(k\) is the number of non-zero off diagonals in \(\boldsymbol{U}\),
- the CHOL \(k\), CHOL \(k \mathrm{C}\) and ANTE \(k\) models are equivalent to the US structure, that is, the full variance structure, when \(k\) is \(\omega-1\),
- initial values for US, CHOL \(k\) CHOL \(k\) C and ANTE \(k\) structures are given in the form of a US matrix which is specified lower triangle row-wise, viz
\(\left[\begin{array}{lll}\sigma_{11} & & \\ \sigma_{21} & \sigma_{22} & \\ \sigma_{31} & \sigma_{32} & \sigma_{33}\end{array}\right]\),
that is, initial values are given in the order, \(1=\sigma_{11}, 2=\sigma_{21}, 3=\sigma_{22}, \ldots\)
- the US model is associated with several special features of ASReml. When used in the R structure for multivariate data, ASReml automatically recognises patterns of missing values in the responses (see Chapter 8). Also, there is an option to update its values by EM rather than AI when its AI updates make the matrix non positive definite.
- The Matérn class of isotropic covariance models is now described. ASReml uses an extended Matérn class which accomodates geometric anisotropy and a choice of metrics for random fields observed in two dimensions. This extension, described in detail in Haskard (2006), is given by
\[
\rho(\boldsymbol{h} ; \boldsymbol{\phi})=\rho_{M}(d(\boldsymbol{h} ; \delta, \alpha, \lambda) ; \phi, \nu)
\]
where \(\boldsymbol{h}=\left(h_{x}, h_{y}\right)^{T}\) is the spatial separation vector, \((\delta, \alpha)\) governs geometric anisotropy, \((\lambda)\) specifies the choice of metric and \((\phi, \nu)\) are the parameters of the Matérn correlation function. The function is
\[
\begin{equation*}
\rho_{M}(d ; \phi, \nu)=\left\{2^{\nu-1} \Gamma(\nu)\right\}^{-1}\left(\frac{d}{\phi}\right)^{\nu} K_{\nu}\left(\frac{d}{\phi}\right), \tag{7.1}
\end{equation*}
\]
where \(\phi>0\) is a range parameter, \(\nu>0\) is a smoothness parameter, \(\Gamma(\cdot)\) is the gamma function, \(K_{\nu}(\).\() is the modified Bessel function of the third kind of order\) \(\nu\) (Abramowitz and Stegun, 1965, section 9.6) and \(d\) is the distance defined in terms of \(X\) and \(Y\) axes: \(h_{x}=x_{i}-x_{j} ; h_{y}=y_{i}-y_{j} ; s_{x}=\cos (\alpha) h_{x}+\sin (\alpha) h_{y}\); \(s_{y}=\cos (\alpha) h_{x}-\sin (\alpha) h_{y} ; d=\left(\delta\left|s_{x}\right|^{\lambda}+\left|s_{y}\right|^{\lambda} / \delta\right)^{1 / \lambda}\).
For a given \(\nu\), the range parameter \(\phi\) affects the rate of decay of \(\rho(\cdot)\) with increasing \(d\). The parameter \(\nu>0\) controls the analytic smoothness of the underlying process \(\boldsymbol{u}_{s}\), the process being \(\lceil\nu\rceil-1\) times mean-square differentiable, where \(\lceil\nu\rceil\) is the smallest integer greater than or equal to \(\nu\) (Stein, 1999, page 31). Larger \(\nu\) correspond to smoother processes. ASReml uses numerical derivatives for \(\nu\) when its current value is outside the interval \([0.2,5]\).
When \(\nu=m+\frac{1}{2}\) with \(m\) a non-negative integer, \(\rho_{M}(\cdot)\) is the product of \(\exp (-d / \phi)\) and a polynomial of degree \(m\) in \(d\). Thus \(\nu=\frac{1}{2}\) yields the exponential correlation function, \(\rho_{M}\left(d ; \phi, \frac{1}{2}\right)=\exp (-d / \phi)\), and \(\nu=1\) yields Whittle's elementary correlation function, \(\rho_{M}(d ; \phi, 1)=(d / \phi) K_{1}(d / \phi)\) (Webster and Oliver, 2001).
When \(\nu=1.5\) then
\[
\rho_{M}(d ; \phi, 1.5)=\exp (-d / \phi)(1+d / \phi)
\]
which is the correlation function of a random field which is continuous and once differentiable. This has been used recently by Kammann and Wand (2003). As \(\nu \rightarrow \infty\) then \(\rho_{M}(\cdot)\) tends to the gaussian correlation function.
The metric parameter \(\lambda\) is not estimated by ASReml ; it is usually set to 2 for Euclidean distance. Setting \(\lambda=1\) provides the cityblock metric, which together with \(\nu=0.5\) models a separable AR1 \(\times\) AR1 process. Cityblock metric may be appropriate when the dominant spatial processes are aligned with rows/columns as occurs in field experiments. Geometric anisotropy is discussed in most geostatistical books (Webster and Oliver, 2001, Diggle et al., 2003) but rarely are the anisotropy angle or ratio estimated from the data. Similarly the smoothness parameter \(\nu\) is often set a-priori (Kammann and Wand, 2003, Diggle et al., 2003). However Stein (1999) and Haskard (2006) demonstrate that \(\nu\) can be reliably estimated even for modest sized data-sets, subject to caveats regarding the sampling design.
The syntax for the Matérn class in ASReml is given by MAT \(k\) where \(k\) is the number of parameters to be specified; the remaining parameters take their default values. Use the ! G qualifier to control whether a specified parameter is estimated or fixed. The order of the parameters in ASReml, with their defaults, is ( \(\phi, \nu=0.5, \delta=1, \alpha=0, \lambda=2\) ). For example, if we wish to fit a Matérn model with only \(\phi\) estimated and the other parameters set at their defaults then we use MAT1. MAT2 allows \(\nu\) to be estimated or fixed at some other value (for example MAT2 . 21 ! GPF). The parameters \(\phi\) and \(\nu\) are highly correlated so it may be better to manually cover a grid of \(\nu\) values.
We note that there is non-uniqueness in the anisotropy parameters of this metric \(d(\cdot)\) since inverting \(\delta\) and adding \(\frac{\pi}{2}\) to \(\alpha\) gives the same distance. This non-uniqueness can be removed by considering \(0 \leq \alpha<\frac{\pi}{2}\) and \(\delta>0\), or by considering \(0 \leq \alpha<\pi\) and either \(0<\delta \leq 1\) or \(\delta \geq 1\). With \(\lambda=2\), isotropy occurs when \(\delta=1\), and then the rotation angle \(\alpha\) is irrelevant: correlation contours are circles, compared with ellipses in general. With \(\lambda=1\), correlation contours are diamonds.
- power models rely on the definition of distance for the associated term, for example,
- the distance between time points in a one-dimensional longitudinal analysis,
- the spatial distance between plot coordinates in a two-dimensional field trial analysis.

Information for determining distances is supplied by the key argument on the structure line.
- For one dimensional cases, key may be
* the name of a data field containing the coordinate values when it relates to an R structure
* 0 in which case a vector of coordinates of length order must be supplied after all R and G structure lines.
* \(\mathrm{fac}(x)\) when it relates to model term \(\mathrm{fac}(x)\).
- In two directions (IEXP, IGAU, IEUC, AEXP, AGAU, MATn) the key argument also depends on whether it relates to an R or G structure.
* For an R structure, use the form \(r r c c\) where \(r r\) is the number of a data field containing the coordinates for the first dimension and \(c c\) is the number of a data field containing the coordinates for the second direction. For example, in the analysis of spatial data, if the \(x\) coordinate was in field 3 and the \(y\) coordinate was in field 4, the second argument would be 304 .
* For a G structure relating to the model term \(\mathrm{fac}(x, y)\), use \(\mathrm{fac}(x, y)\). For example
\(\vdots\)
```

y ~ mu ...!r fac(x,y) ...

```
引
fac (x,y) 1
fac ( \(\mathrm{x}, \mathrm{y}\) ) fac( \(\mathrm{x}, \mathrm{y}\) ) IEUCV . 71.3
- FAk, FACV \(k\) and XFA \(k\) are different parameterizations of the factor analytic model in which \(\boldsymbol{\Sigma}\) is modelled as \(\boldsymbol{\Sigma}=\boldsymbol{\Gamma} \boldsymbol{\Gamma}^{\prime}+\boldsymbol{\Psi}\) where \(\boldsymbol{\Gamma}{ }^{(\omega \times k)}\) is a matrix of loadings on the covariance scale and \(\boldsymbol{\Psi}\) is a diagonal vector of specific variances. See Smith et al. (2001) and Thompson et al. (2003) for examples of factor analytic models in multi-environment trials. The general limitations are
- that \(\boldsymbol{\Psi}\) may not include zeros except in the XFAk formulation
- constraints are required in \(\boldsymbol{\Gamma}\) for \(k>1\) for identifiability. Typically, one zero is placed in the second column, two zeros in the third column, etc.
- The total number of parameters fitted \((k \omega+\omega-k(k-1) / 2)\) may not exceed \(\omega(\omega+1) / 2\).
- in FAk models the variance-covariance matrix \(\boldsymbol{\Sigma}^{(\omega \times \omega)}\) is modelled on the correlation scale as \(\boldsymbol{\Sigma}=\boldsymbol{D C D}\), where
- \(\boldsymbol{D}^{(\omega \times \omega)}\) is diagonal such that \(\boldsymbol{D} \boldsymbol{D}=\operatorname{diag}(\boldsymbol{\Sigma})\),
- \(\boldsymbol{C}^{(\omega \times \omega)}\) is a correlation matrix of the form \(\boldsymbol{F} \boldsymbol{F}^{\prime}+\boldsymbol{E}\) where \(\boldsymbol{F}^{(\omega \times k)}\) is a matrix of loadings on the correlation scale and \(\boldsymbol{E}\) is diagonal and is defined by difference,
- the parameters are specified in the order loadings for each factor ( \(\boldsymbol{F}\) ) followed by the variances \((\operatorname{diag}(\boldsymbol{\Sigma}))\); when \(k\) is greater than 1, constraints on
the elements of \(\boldsymbol{F}\) are required, see Table 7.5,
- FACVk models (CV for covariance) are an alternative formulation of FA models in which \(\boldsymbol{\Sigma}\) is modelled as \(\boldsymbol{\Sigma}=\boldsymbol{\Gamma} \boldsymbol{\Gamma}^{\prime}+\boldsymbol{\Psi}\) where \(\boldsymbol{\Gamma}{ }^{(\omega \times k)}\) is a matrix of loadings on the covariance scale and \(\boldsymbol{\Psi}\) is diagonal. The parameters in FACV
- are specified in the order loadings \((\boldsymbol{\Gamma})\) followed by variances \((\boldsymbol{\Psi})\); when \(k\) is greater than 1, constraints on the elements of \(\boldsymbol{\Gamma}\) are required, see Table 7.5,
- are related to those in FA by \(\boldsymbol{\Gamma}=\boldsymbol{D F}\) and \(\boldsymbol{\Psi}=\boldsymbol{D E D}\),
difficult
difficult
- XFAk (X for extended) is the third form of the factor analytic model and has the same parameterisation as for FACV, that is, \(\boldsymbol{\Sigma}=\boldsymbol{\Gamma} \boldsymbol{\Gamma}^{\prime}+\boldsymbol{\Psi}\). However, XFA models
- have parameters specified in the order \(\operatorname{diag}(\boldsymbol{\Psi})\) and \(\operatorname{vec}(\boldsymbol{\Gamma})\); when \(k\) is greater than 1, constraints on the elements of \(\boldsymbol{\Gamma}\) are required, see Table 7.5,
- may not be used in R structures,
- are used in G structures in combination with the \(\operatorname{xfa}(f, k)\) model term,
- return the factors as well as the effects.
- permit some elements of \(\Psi\) to be fixed to zero,
- are computationally faster than the FACV formulation for large problems when \(k\) is much smaller than \(\omega\),

Special consideration is required when using the XFAk model. The SSP must be expanded to have room to hold the \(k\) factors. This is achieved by using the \(\mathrm{xfa}(f, k)\) model term in place of \(f\) in the model. For example,
y \(\sim\) site !r geno.xfa(site,2)
001
geno.xfa(site,2) 2
geno
xfa(site,2) 0 XFA2
- the OWN variance structure is a facility whereby users may specify their own variance structure. This facility requires the user to supply a program MYOWNGDG that reads the current set of parameters, forms the \(\boldsymbol{G}\) matrix and a full set of derivative matrices, and writes these to disk. Before each iteration, ASReml writes the OWN parameters to a file, runs MYOWNGDG (which it presumes forms the \(\boldsymbol{G}\) and derivative matrix) and then reads the matrices back in. An example of MYOWNGDG.f90 is distributed with ASReml. It duplicates the AR1 and AR2 structures. The following job fits an AR2 structure using this program.
```

Example of using the OWN structure
rep
blcol

```
```

blrow
variety 25
yield
barley.asd !skip 1 !OWN MYOWN.EXE
y ~ va
12
10 0 AR1 . 1
15 0 OWN2 .2 .1 !TRR

```

The file written by ASReml has extension .own and looks like
```

 15 2 1
 0.6025860D+000.1164403D+00
This file was written by asreml for reading by your
program MYOWNGDG
asreml writes this file, runs your program and then reads
shfown.gdg
which it presumes has the following format:
The first lines should agree with the top of this file
specifying the order of the matrices (15)
the number of variance parameters (2)
and a control parameter you can specify (1).
These are written in (3I5) format. They are followed by
the list of variance parameters written in (6D13.7) format.
Follow this with }3\mathrm{ matrices written in (6D13.7) format.
These are to be each of }120\mathrm{ elements being lower triangle
row-wise of the G matrix and its derivatives with respect
to the parameters in turn.

```

This file contains details about what is expected in the file written by your program. The filename used has the same basename as the job you are running with extension .own for the file written by ASReml and .gdg for the file your program writes. The type of the parameters is set with the !T qualifier described below. The control parameter is set using the ! F qualifier.
- ! F2 applies to OWN models. With OWN, the argument of !F is passed to the MYOWNGDG program as an argument the program can access. This is the mechanism that allows several OWN models to be fitted in a single run.
- ! Ts is used to set the type of the parameters. It is primarily used in conjunction with the OWN structure as ASReml knows the type in other cases. The valid type codes are as follows:
\begin{tabular}{lll} 
code & description & action if !GP is set \\
\hline V & variance & forced positive \\
G & variance ratio & forced positive \\
R & correlation & \(-1<r<1\) \\
C & covariance & \\
P & positive correlation & \(0<r<1\) \\
L & loading & \\
\hline
\end{tabular}

This coding also affects whether the parameter is scaled by \(\sigma^{2}\) in the output.

\subsection*{7.6 Variance structure qualifiers}

Table 7.4 describes the R and G structure line qualifiers.
Table 7.4: List of \(R\) and \(G\) structure qualifiers
\begin{tabular}{|c|c|}
\hline qualifier & action \\
\hline \(!=s\) & used to constrain parameters within variance structures, see Section \\
\hline !GP, !GU, !GF,
!GZ & \begin{tabular}{l}
7.9 . \\
modify the updating of the variance parameters. The exact action of these codes in setting bounds for parameters depends on the particular model.
\end{tabular} \\
\hline & ! GP (the default in most cases) attempts to keep the parameter in the theoretical parameter space and is activated when the update of a parameter would take it outside its space. For example, if an update would make a variance negative, the negative value is replaced by a small positive value. Under the !GP condition, repeated attempts to make a variance negative are detected and the value is then fixed at a small positive value. This is shown in the output in that the parameter will have the code \(B\) rather than \(P\) appended to the value in the variance component table. \\
\hline & ! GU (unrestricted) does not limit the updates to the parameter. This allows variance parameters to go negative and correlation parameters to exceed \(\pm 1\). Negative variance components may lead to problems; the mixed model coefficient matrix may become non-positive definite. In this case the sequence of REML log-likelihoods may be erratic and you may need to experiment with starting values. \\
\hline & ! GZ only applies to FA and FACV models and fixes the corresponding parameter in to zero ( 0.00 ). \\
\hline
\end{tabular}

List of \(R\) and \(G\) variance structure definition line qualifiers
qualifier \(\quad\) action \(\quad\)

For multiple parameters, the form ! \(G X X X X\) can be used to specify \(F\), \(\mathrm{P}, \mathrm{U}\) or Z for the parameters individually. A shorthand notation allows a repeat count before a code letter. Thus !GPPPPPPPPPPPPPPZPPPZP could be written as !G14PZ3PZP.

For a US model, ! GP makes ASReml attempt to keep the matrix positive definite. After each AI update, it extracts the eigenvalues of the updated matrix. If any are negative or zero, the AI update is discarded and an EM update is performed. Notice that the EM update is applied to all of the variance parameters in the particular US model and cannot be applied to only a subset of them.
\(!S 2=r \quad\) sets the initial value of the error variance within the section to \(r\) : the ! \(52=\) qualifier may be used in \(R\) structure definitions to represent the residual variance associated with the particular section. There is always an error variance parameter associated with a section \(R\) structure. In multiple section analyses the ! \(52=\) qualifier is used on the first of the \(c\) lines for each section to set the initial error variance for that section. If this is not supplied, ASReml calculates an initial value that is half the simple variance of the data in the site. To fix the variance \(!S 2==r\) is used.
\(!\mathrm{S} 2==r \quad\) is similar to \(!\mathrm{S} 2=\) except that the variance is fixed at \(r\).
\(!S 2==1 \quad\) is used in the analysis of multiple section data and in multivariate analyses and when variance parameters are included in the R structure.

\subsection*{7.7 Rules for combining variance models}

As noted in Section 2.1 under Combining variance models, variance structures are sometimes formed by combining variance models. For example, a two factor interaction may involve two variance models, one for each of the two factors in the interaction. Some of the rules for combining variance models differ for \(R\) structures and G structures.

A summary of the rules is as follows:
- when combining variance models in both R and \(G\) structures, the resulting direct product structure must match the ordered effects with the outer factor first, for example, the G structure in the example opposite is for column.row which tells ASReml that the direct product structure matches the effects ordered rows within columns. (The variance model can be written as \(\sigma^{2}\left(I+\Sigma_{C} \otimes \lambda \Sigma_{R}\right)\).) This is why the G structure definition line
```

NIN Alliance Trial }198
variety !A
id
row 22
column 11
nin89.asd !skip 1
yield ~ mu variety !r repl,
column.row
0 0 1
column.row 2
column 0 AR1 0.4
row 0 ARV1 0.3 0.1

```

See Sections 2.1
and 7.5 for column is specified first,
- ASReml automatically includes and estimates an error variance parameter for each section of an \(R\) structure. The variance structures defined by the user should therefore normally be correlation matrices. A variance model can be specified but the \(!S 2==1\) qualifier would then be required to fix the error variance at 1 and prevent ASReml trying to estimate two confounded parameters (error variance and the parameter corresponding to the variance model specified, see 3a on page 111),
- ASReml does not have an implicit scale parameter for G structures that are defined explicitly. For this reason the model supplied when the \(G\) structure involves just one variance model must be a variance model; an initial value must be supplied for this associated scale parameter; this is discussed under additional_initial_values on page 119,
- when the G structure involves more than one variance model, one must be either a homogeneous or a heterogeneous variance model and the rest should be correlation models; if more than one are non-correlation models then the ! GF qualifier should be used to avoid identifiability problems, that is, ASReml trying to estimate both parameters when they are confounded.

\subsection*{7.8 G structures involving more than one random term}

The usual case is that a variance structure applies to a particular term in the linear model and that there is no covariance between model terms. Sometimes it is appropriate to include a covariance. Then, it is essential that the model terms be listed together and that the variance structure defined for the first term be the structure required for both terms. When the terms are of different size, the terms must be linked together with the ! \{ and ! \} qualifiers (Table 6.1). While ASReml
will check the overall size, it does not check that the order of effects matches the structure definition so the user must be careful to get this right. Check that the terms are conformable by considering the order of the fitted effects and ensuring the first term of the direct product corresponds to the outer factor in the nesting of the effects. Two examples are
- random regressions where we want a covariance between intercept and slope \(\vdots\)
!r ! \{ animal animal.time !\}
\(\vdots\)
animal 2
20 US 3-. 52
animal
is equivalent (though not identical because of the scaling differences) to
!r pol(time,1).animal
!
pol(time,1).animal 2
pol(time,1) 0 US 1-.1 . 2
animal
- maternal/direct genetic covariance
```

lambid !P
sireid !P
damid !P
\vdots
wwt ywt ~ Trait Trait.sex !r !{ Trait.lambid at(Trait,2).damid !}
\vdots
Trait.lambid 2
3 0 US
1.3 \# Var(wwt_D)
1.0 2.2 \# Cov(wwt_D,ywt_D) Var(ywt_D)
-.1 -. 2 0.8 \# Cov(wwt_D,wwt_M) Cov(ywt_D,wwt_M) Var(wwt_M)
lambid O AINV \# AINV explicitly requests to use A inverse

```

\subsection*{7.9 Constraining variance parameters}

\section*{Parameter equality within and between variance structures}
difficult Equality of parameters in a variance model can be specified using the \(!=s\) qualifier where \(s\) is a string of letters and/or zeros (see Table 7.4). Positions in the string correspond to the parameters of the variance model:
- all parameters with the same letter in the structure are treated as the same parameter,
- 1-9 are different from a-z which are different from \(\mathrm{A}-\mathrm{Z}\) so that 61 equalities can be specified. 0 and . mean unconstrained. A colon generates a sequence viz. a:e is the same as abcde
- Putting \% as the first characterin \(s\) makes the interpretation of codes absolute (so that they apply across structures).
- Putting * as the first characterin \(s\) indicates that numbers are repeat counts, \(\mathrm{A}-\mathrm{Z}\) are equality codes and only . is unconstrained. Thus \(!=*\).3A2. is equivalent to ! =OAAAOO or !=Oaaa00.

Examples are presented in Table 7.5.
Table 7.5: Examples of constraining variance parameters in ASReml
\begin{tabular}{|c|c|}
\hline ASReml code & action \\
\hline \(!=A B A C B A O C B A\) & \begin{tabular}{l}
constrain all parameters corresponding to A to be equal, similarly for B and C. The 7th parameter would be left unconstrained. This sequence applied to an unstructured \(4 \times 4\) matrix would make it banded, that is \\
A \\
B A \\
C B A \\
0 CB A
\end{tabular} \\
\hline ```
site.gen 2 # G header line
site 0 US .3 !=OAOAAO !GPUPUUP
.1 .4 .1 . 1 . 3
gen
``` & this example defines a structure for the genotype by site interaction effects in a MET in which the genotypes are independent random effects within sites but are correlated across sites with equal covariance. \\
\hline
\end{tabular}

Examples of constraining variance parameters in ASReml
ASReml code action
site 0 FA2 !G4PZ3P4P !=00000000VVVV
4*.9 \# initial values for 1st factor
\(03^{*} .1\) \# initial values for 2 nd factor \# first fixed at 0
4*.2 \# init values for site variances
xfa(site,2) 0 XFA2 !=VVVV0 ! 4P4PZ3P
\(4^{*} .2\) \# initial specific variances
\(4^{*} 1.2 \quad \#\) initial loadings for 1 st factor
\(03^{*} .3\) \# initial loadings for 2 nd factor
a 2 factor Factor Analytic model for 4 sites with equal variance is specified using this syntax. The first loading in the second factor is constrained equal to 0 for identifiability. \(P\) places restrictions on the magnitude of the loadings and the variances to be positive.
a 2 factor Factor analytic model in which the specific variances are all equal.

\section*{Constraints between and within variance models}
difficult More general relationships between variance parameters can be defined using the ! VCC \(c\) qualifier placed on the data file definition line.
- !VCC \(c\) specifies that there are \(c\) constraint lines defining constraints to be applied,
- the constraint lines occur after the variance header line and any \(R\) and \(G\) structure lines, that is, there must be a variance header line,
- each constraint is specified in a separate line in the form
\(P_{1} * V_{1} \quad P_{2} * V_{2} \quad \ldots\)
- \(P_{i}\) is the name of a random model term or the number of a parameter and \(V_{i}\) is a coefficient,
- \(P_{1}\) is the primary parameter number,
- * indicates that the next values \(\left(V_{i}\right)\) is a weighting coefficient,
- if the coefficient is 1 you may omit the * 1 ,
- if the coefficient is -1 you may write \(-P_{i}\) instead of \(P_{i} *-1\),
- the meaning of the coefficients is as follows \(P_{2}=V_{2} * P_{1} / V_{1}\),
- typically \(V_{1}=1\),
- a variance parameter may only be included in constraints once,
- the \(P_{i}\) terms refer to positions in the full variance parameter vector. This may change if the model is changed and is often difficult to determine as a number. If it refers to a parameter which is a single traditional variance component associated with a random term, the name of the random term may be given instead of the parameter number. The full parameter vector includes a term for each factor in the model and then a term for each parameter defined in the R and G structures. A list of \(P_{i}\) numbers and their initial values is returned in the .res file to help you to check the numbers. Alternatively, examine the .asr file from an initial run with !VCC included but no arguments supplied. The job will terminate but ASReml will provide the \(P_{i}\) values associated with each variance component. Otherwise the numbers are given in the .res file.

The following are examples:
\begin{tabular}{|c|c|}
\hline ASReml code & action \\
\hline \(57 * .1\) & parameter 7 is a tenth of parameter 5 \\
\hline \(5-7\) & parameter 7 is the negative of parameter 5 \\
\hline \(\begin{array}{llllll}32 & 34 & 35 & 37 & 38 & 39\end{array}\) & for a \((4 \times 4)\) US matrix given by parameters \(31 \ldots 40\), the covariances are forced to be equal. \\
\hline units -uni(check) & parameter associated with model term uni(check) has the same magnitude but opposite sign to the parameter associated with model term units \\
\hline
\end{tabular}

\subsection*{7.10 Model building using the !CONTINUE qualifier}

In complex models, the Average Information algorithm can have difficulty maximising the REML log-likelihood when starting values are not reasonably close to the REML solution. ASReml has several internal strategies to cope with this problem but these are not always successful.

When the user needs to provide better starting values, one method is to fit a simpler variance model. For example, it can be difficult to guess reasonable starting values for an unstructured variance matrix. A first step might be to assume independence and just estimate the variances. If all the variances are not positive, there is little point proceeding to try and estimate the covariances.

The !CONTINUE qualifier instructs ASReml to retrieve variance parameters from the .rsv file if it exists rather than using the values in the .asr file. When reading the .rsv file, it will take results from some matrices as supplying starting values for other matrices. The transitions recognised are

DIAG to CORUH
DIAG to FA1
CORUH to FA1
FA \(i\) to \(\mathrm{FA} i+1\)
FA \(i\) to CORGH
FA \(i\) to US
CORGH to US

The use of the .rsv file with !CONTINUE in this way reduces the need for the user to type in the updated starting values.

The various models may be written in various ! PART \(s\) of the job and controlled by the !DOPART qualifier. When used with the -r qualifier on the command line (see Chapter 12), the output from the various parts has the partnumber appended to the filename. In this case it would be necessary to copy the .rsv files with the new part number before running the next part to take advantage of this facility.

\section*{Introduction}

Repeated measures on rats

Wether trial data
Model specification
Variance structures
Specifying multivariate variance structures in ASReml
The output for a multivariate analysis

\subsection*{8.1 Introduction}

Multivariate analysis is used here in the narrow sense of a multivariate mixed model. There are many other multivariate analysis techniques which are not covered by ASReml. Multivariate analysis is used when we are interested in estimating the correlations between distinct traits (for example, fleece weight and fibre diameter in sheep) and for repeated measures of a single trait.

\section*{Repeated measures on rats}

Wolfinger (1996) summarises a range of variance structures that can be fitted to repeated measures data and demonstrates the models using five weights taken weekly on 27 rats subjected to 3 treatments. This command file demonstrates a multivariate analysis of the five repeated measures. Note that the two dimensional structure for common error meets the requirement of independent units and is correctly ordered traits with units.

\section*{Wether trial data}

Three key traits for the Australian wool industry are the weight of wool grown per year, the cleanness and the diameter of that wool. Much of the wool is produced from wethers and most major producers have traditionally used a particular strain or bloodline. To assess the importance of bloodline differences, many wether trials were conducted. One trial was conducted from 1984 to 1988 at Borenore near Orange. It involved 35 teams of wethers representing 27 bloodlines. The file wether.dat shown below contains greasy fleece weight (kg), yield (percentage of clean fleece weight to greasy fleece weight) and fibre diameter (microns). The code (wether.as) to the right performs a basic bivariate analysis of this data.
```

Wolfinger rat data
treat !A
wt0 wt1 wt2 wt3 wt4
rat.dat
wt0 wt1 wt2 wt3 wt4 ~ Trait,
treat Trait.treat
120
27 0 ID \#error variance
Trait 0 US
15 * 0

```
```

Orange Wether Trial 1984-8
SheepID !I
TRIAL
BloodLine !I
TEAM *
YEAR *
GFW YLD FDIAM
wether.dat !skip 1
GFW FDIAM ~ Trait Trait.YEAR,
!r Trait.TEAM Trait.SheepID
122
1 4 8 5 ~ 0 ~ I D ~
Trait 0 US .2 . 2 . 4
Trait.TEAM 2
Trait 0 US
0.4
0.3 1.3
TEAM O ID
Trait.SheepID 2
Trait 0 US
0.2 0.2 2
SheepID O ID
predict YEAR Trait

```
```

SheepID Site Bloodline Team Year GFW Yield FD
0101 3 21 1 1 5.6 74.3 18.5
0101 3 21 1 2 6.0 71.2 19.6
0101 3 21 1 3 8.0 75.7 21.5
0102 3 21 1 1 5.3 70.9 20.8
0102 3 21 1 2 5.7 66.1 20.9
0102 3 21 1 3 6.8 70.3 22.1
0103 3 21 1 1 5.0 80.7 18.9
0103 3 21 1 2 5.5 75.5 19.9
0103 3 21 1 3 7.0 76.6 21.9
\vdots
4013 3 43 35 1 7.9 75.9 22.6
4013 3 43 35 2 7.8 70.3 23.9
4013 3 43 35 3 9.0 76.2 25.4
4014 3 43 35 1 8.3 66.5 22.2
4014 3 43 35 2 7.8 63.9 23.3
4014 3 43 35 3 9.9 69.8 25.5
4015 3 43 35 1 6.9 75.1 20.0
4015 3 43 35 2 7.6 71.2 20.3
4015 3 43 35 3 8.5 78.1 21.7

```

\subsection*{8.2 Model specification}

The syntax for specifying a multivariate linear model in ASReml is
\(Y\)-variates \(\sim\) fixed \([!\mathrm{r}\) random] [!f sparse_fixed]
- \(Y\)-variates is a list of traits,
- fixed, random and sparse_fixed are as in the univariate case (see Chapter 6) but involve the special term Trait and interactions with Trait.
The design matrix for Trait has a level (column) for each trait.
- Trait by itself fits the mean for each variate,
- In an interaction Trait.Fac fits the factor Fac for each variate and Trait. Cov fits the covariate Cov for each variate.

ASReml internally rearranges the data so that \(n\) data records containing \(t\) traits each becomes \(n\) sets of \(t\) analysis records indexed by the internal factor Trait i.e. \(n t\) analysis records ordered Trait within data record. If the data is already in this long form, use the !ASMV \(t\) qualifier to indicate that a multivariate analysis is required.

\subsection*{8.3 Variance structures}

Using the notation of Chapter 7, consider a multivariate analysis with \(t\) traits and \(n\) units in which the data are ordered traits within units. An algebraic expression for the variance matrix in this case is
\[
\boldsymbol{I}_{n} \otimes \boldsymbol{\Sigma}
\]
where \(\boldsymbol{\Sigma}^{(t \times t)}\) is an unstructured variance matrix.

\section*{Specifying multivariate variance structures in ASReml}

A more sophisticated error structure is required for multivariate analysis. For a standard multivariate analysis
- the error structure for the residual must be specified as two-dimensional with independent records and an unstructured variance matrix across traits; records may have observations missing in different patterns and these are handled internally during analysis,
- the R structure must be ordered traits within units, that is, the \(R\) structure definition line for units must be specified before the line for Trait,
- variance parameters are variances not variance ratios,
- the R structure definition line for units,
```

Orange Wether Trial 1984-8
SheepID !I
TRIAL
BloodLine !I
TEAM *
YEAR *
GFW YLD FDIAM
wether.dat !skip 1
GFW FDIAM ~ Trait Trait.YEAR,
!r Trait.TEAM Trait.SheepID
122
1 4 8 5 ~ 0 ~ I D ~
Trait 0 US
3*0
Trait.TEAM 2
Trait O US
3*0
TEAM O ID
Trait.SheepID 2
Trait 0 US
3*0
SheepID O ID
predict YEAR Trait

```
that is, 14850 ID, could be replaced by 0 or 00 ID; this tells ASReml to fill in the number of units and is a useful option when the exact number of units in the data is not known to the user,
- the error variance matrix is specified by the model Trait 0 US
- the initial values are for the lower triangle of the (symmetric) matrix specified row-wise,
- finding reasonable initial values can be a problem. If initial values are written on the next line in the form \(q * 0\) where \(q\) is \(t(t+1) / 2\) and \(t\) is the number of traits, ASReml will take half of the phenotypic variance matrix of the data as an initial value, see .as file in code box for example,
- the special qualifiers relating to multivariate analysis are ! ASUV and ! ASMV \(t\), see Table 5.4 for detail
- to use an error structure other than US for the residual stratum you must also specify ! ASUV (see Table 5.4) and include mv in the model if there are missing values,
- to perform a multivariate analysis when the data have already been expanded use ! ASMV \(t\) (see Table 5.4)
- \(t\) is the number of traits that ASReml should expect,
- the data file must have \(t\) records for each multivariate record although some may be coded missing.

\subsection*{8.4 The output for a multivariate analysis}

Below is the output returned in the .asr file for this analysis.
```

ASReml 1.630 [01 Jun 2005] Orange Wether Trial 1984-88
Build: j [01 Jul 2005] 32 bit
13 Jul 2005 09:38:00.928 32.00 Mbyte Windows wether
Licensed to: Arthur Gilmour
*****************************************************************

* SYNTAX change: A/B now means A A.B
*     * 
* Contact support@asreml.co.uk for licensing and support *
***************************************************** ARG *

```
Folder: C:\data\asr\UG2\manex
 TAG ! I
 BloodLine !I
QUALIFIERS: !SKIP 1
Reading wether.dat FREE FORMAT skipping 1 lines
traits Bivariate analysis of GFW and FDIAM
Using 1485 records of 1485 read
\begin{tabular}{lrrrrrr}
Model term & Size & \#miss & \#zero & MinNon0 & Mean & MaxNon0 \\
1 TAG & 521 & 0 & 0 & 1 & 261.0956 & 521 \\
2 TRIAL & & 0 & 0 & 3.000 & 3.000 & 3.000 \\
3 BloodLine & 27 & 0 & 0 & 1 & 13.4323 & 27 \\
4 TEAM & 35 & 0 & 0 & 1 & 18.0067 & 35 \\
5 YEAR & 3 & 0 & 0 & 1 & 2.0391 & 3
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline Residual & \multicolumn{5}{|l|}{Covariance/Variance/Correlation Matrix UnStructured} \\
\hline 0.4360 is the & 0.19840 .4360 & \multicolumn{4}{|c|}{0.4360} \\
\hline correlation & \multicolumn{5}{|l|}{0.4406} \\
\hline \multirow[t]{3}{*}{Trait.TEAM} & \multicolumn{5}{|l|}{Covariance/Variance/Correlation Matrix UnStructured} \\
\hline & \multicolumn{5}{|l|}{\(0.3745 \quad 0.5436\)} \\
\hline & \multicolumn{5}{|l|}{0.38871 .365} \\
\hline \multirow[t]{6}{*}{Trait.TAG} & \multicolumn{5}{|l|}{Covariance/Variance/Correlation Matrix UnStructured} \\
\hline & \(0.2572 \quad 0.3124\) & & & & \\
\hline & \(0.2196 \quad 1.921\) & & & & \\
\hline & Analysis of Variance & NumDF & DendF & F_inc & Prob \\
\hline & 9 Trait & 2 & 33.0 & 5761.58 & <. 001 \\
\hline & 10 Trait. YEAR & 4 & 1162.2 & 1094.90 & <. 001 \\
\hline
\end{tabular}

Notice: The DenDF values are calculated ignoring fixed/boundary/singular variance parameters using empirical derivatives.
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|r|}{Estimate} & Standard Error & T-value & T-prev \\
\hline \multicolumn{6}{|l|}{10 Trait. YEAR} \\
\hline & 2 & -0.102262 & \(0.290190 \mathrm{E}-01\) & -3. 52 & \\
\hline & 3 & 1.06636 & \(0.290831 \mathrm{E}-01\) & 36.67 & 42.07 \\
\hline & 5 & 1.17407 & \(0.433905 \mathrm{E}-01\) & 27.06 & \\
\hline & 6 & 2.53439 & \(0.434880 \mathrm{E}-01\) & 58.28 & 32.85 \\
\hline \multicolumn{6}{|l|}{9 Trait} \\
\hline & 1 & 7.13717 & 0.107933 & 66.13 & \\
\hline & 2 & 21.0569 & 0.209095 & 100.71 & 78.16 \\
\hline 11 Trait. TEAM & & & 70 effects & fitted & \\
\hline 12 Trait. TAG & & & 1042 effects & fitted & \\
\hline \multicolumn{6}{|l|}{SLOPES FOR LOG(ABS (RES)) on LOG(PV) for Section 1} \\
\hline
\end{tabular}
```

    1.00 1.54
        1 0 \text { possible outliers: see .res file}
    ```
Finished: 13 Jul 2005 09:38:05.725 LogL Converged

\section*{9 \\ Command file: Genetic analysis}

\author{
Introduction \\ The command file
}

The pedigree file
Reading in the pedigree file
Genetic groups
GIV files
The example
Multivariate genetic analysis

\subsection*{9.1 Introduction}

In an 'animal model' or 'sire model' genetic analysis we have data on a set of animals that are genetically linked via a pedigree. The genetic effects are therefore correlated and, assuming normal modes of inheritance, the correlation expected from additive genetic effects can be derived from the pedigree provided all the genetic links are in the pedigree. The additive genetic relationship matrix (sometimes called the numerator relationship matrix) can be calculated from the pedigree. It is actually the inverse relationship matrix that is formed by ASReml for analysis. Users new to this subject might find notes by Julius van der Werf helpful:
http://www-personal.une.edu.au/~jvanderw/Mixed_Models_for_Genetic_analysis.pdf
For the more general situation where the pedigree based inverse relationship matrix is not the appropriate/required matrix, the user can provide a particular general inverse variance (GIV) matrix explicitly in a .giv file.

In this chapter we consider data presented in Harvey (1977) using the command file harvey.as.

\subsection*{9.2 The command file}

In ASReml the ! P data field qualifier indicates that the corresponding data field has an associated pedigree. The file containing the pedigree (harvey.ped in the example) for animal is specified after all field definitions and before the datafile definition. See below for the first 20 lines of harvey.ped together with the corresponding lines of the data file harvey.dat. All individuals appearing in the data file must
```

Pedigree file example
animal !P
sire !A
dam
lines 2
damage
adailygain
harvey.ped !ALPHA
harvey.dat
adailygain mu lines, !r
animal 0.25

``` appear in the pedigree file. When all the pedigree information (individual, male_parent, female_parent) appears as the first three fields of the data file, the data file can double as the pedigree file. In this example the line harvey.ped !ALPHA could be replaced with harvey.dat ! ALPHA. Typically additional individuals providing additional genetic links are present in the pedigree file.

\subsection*{9.3 The pedigree file}

The pedigree file is used to define the genetic relationships for fitting a genetic animal model and is required if the \(!P\) qualifier is associated with a data field. The pedigree file
- has three fields; the identities of an individual, its sire and its dam (or maternal grand sire if the !MGS qualifier, Table 9.1, is specified), in that order,
- is sorted so that the line giving the pedigree of an individual appears before any line where that individual appears as a parent,
- is read free format; it may be the same file as the data file if the data file is free format and has the necessary identities in the first three fields, see below,
- is specified on the line immediately preceding the data file line in the command file,
- use identity 0 or \(*\) for unknown parents.
harvey.ped
```

101 SIRE_1 0
102 SIRE_1 0
103 SIRE_1 0
104 SIRE_1 0
105 SIRE_1 0
106 SIRE_1 0
107 SIRE_1 0
108 SIRE_1 0
109 SIRE_2 0
110 SIRE_2 0
111 SIRE_2 0
112 SIRE_2 0
113 SIRE_2 0
114 SIRE_2 0
115 SIRE_2 0
116 SIRE_2 0
117 SIRE_3 0
118 SIRE_3 0
119 SIRE_3 0
120 SIRE_3 0
\vdots

```
harvey.dat
```

101 SIRE_1 0 1 3 192 390 2241
102 SIRE_1 0 1 3 154 403 2651
103 SIRE_1 0 1 4 185 432 2411
104 SIRE_1 0 1 4 183 457 2251
105 SIRE_1 0 1 5 186 483 2581
106 SIRE_1 0 1 5 177 469 2671
107 SIRE_1 0 1 5 177 428 2711
108 SIRE_1 0 1 5 163 439 2471
109 SIRE_2 0 1 4 188439 2292
110 SIRE_2 0 1 4 178 407 2262
111 SIRE_2 0 1 5 198 498 1972
112 SIRE_2 0 1 5 193 459 2142
113 SIRE_2 0 1 5 186 459 2442
114 SIRE_2 0 1 5 175 375 2522
115 SIRE_2 0 1 5 171 382 1722
116 SIRE_2 0 1 5 168 417 2752
117 SIRE_3 0 1 3 154 389 2383
118 SIRE_3 0 1 4 184 414 2463
119 SIRE_3 0 1 5 174 483 2293
120 SIRE_3 0 1 5 170 430 2303
\vdots

```

\subsection*{9.4 Reading in the pedigree file}

The syntax for specifying a pedigree file in the ASReml command file is pedigree_file [qualifiers]
- the qualifiers \({ }^{1}\) are listed in Table 9.1,
- the identities (individual, male_parent, female_parent) are merged into a single list and the inverse relationship is formed before the data file is read,
- when the data file is read, data fields with the ! P qualifier are recoded according to the combined identity list,
- the inverse relationship matrix is automatically associated with factors coded from the pedigree file unless some other covariance structure is specified. The inverse relationship matrix is specified with the variance model name AINv,
- the inverse relationship matrix is written to ainverse.bin,
- if ainverse.bin already exists ASReml assumes it was formed in a previous run and has the correct inverse
- ainverse.bin is read, rather than the inverse being reformed (unless ! MAKE is specified); this saves time when performing repeated analyses based on a particular pedigree,
- delete ainverse.bin or specify ! MAKE if the pedigree is changed between runs,
- identities are printed in the .sln file,
- identities should be whole numbers less than \(200,000,000\) unless !ALPHA is specified,
- pedigree lines for parents must precede their progeny,
- unknown parents should be given the identity number 0 ,
- if an individual appearing as a parent does not appear in the first column, it is assumed to have unknown parents, that is, parents with unknown parentage do not need their own line in the file,
- identities may appear as both male and female parents, for example, in forestry.

\footnotetext{
\({ }^{1}\) A white paper downloadable from http://www.vsni.co.uk/resources/doc/ contains details of these options.
}

\subsection*{9.5 Genetic groups}

If all individuals belong to one genetic group, then use 0 as the identity of the parents of base individuals. However, if base individuals belong to various genetic groups this is indicated by the ! GROUP qualifier and the pedigree file must begin by identifying these groups. All base individuals should have group identifiers as parents. In this case the identity 0 will only appear on the group identity lines, as in the following example where three sire lines are fitted as genetic groups.
```

Genetic group example
animal !P
sire 9 !A
dam
lines 2
damage
adailygain
harveyg.ped !ALPHA !MAKE !GROUP 3
harvey.dat
adailygain ~ mu
!r animal 02.5 !GU

```
```

G1 0 0
G2 0 0
G3 0 0
SIRE_1 G1 G1
SIRE_2 G1 G1
SIRE_3 G1 G1
SIRE_4 G2 G2
SIRE_5 G2 G2
SIRE_6 G3 G3
SIRE_7 G3 G3
SIRE_8 G3 G3
SIRE_9 G3 G3
101 SIRE_1 G1
102 SIRE_1 G1
103 SIRE_1 G1
163 SIRE_9 G3
164 SIRE_9 G3
165 SIRE_9 G3

```

Important It is usually appropriate to allocate a genetic group identifier where the parent is unknown.

Table 9.1: List of pedigree file qualifiers
\begin{tabular}{ll}
\hline qualifier & description \\
!ALPHA & \begin{tabular}{l}
indicates that the identities are alphanumeric with up to 20 characters; \\
otherwise by default they are numeric whole numbers \(<200,000,000\).
\end{tabular} \\
!DIAG & \begin{tabular}{l}
causes the pedigree identifiers, the diagonal elements of the Inverse of the \\
Relationship and the inbreeding coefficients for the individuals (calculated \\
as the diagonal of \(\boldsymbol{A}-\boldsymbol{I})\) to be written to AINVERSE.DIA. \\
IGIV
\end{tabular}
\end{tabular}

\section*{List of pedigree file qualifiers}
qualifier description
!GROUPS \(g \quad\) includes genetic groups in the pedigree. The first \(g\) lines of the pedigree identify genetic groups (with zero in both the sire and dam fields). All other lines must specify one of the genetic groups as sire or dam if the actual parent is unknown.
! INBRED
!SKIP \(n\)
!SORT
generates pedigree for inbred lines. Each cross is assumed to be selfed several times to stabilize as an inbred line as is usual for cereals, before being evaluated or crossed with another line. Since inbreeding is usually associated with strong selection, it is not obvious that a pedigree assumption of covariance of 0.5 between parent and offspring actually holds. Do not use the ! INBRED qualifier with the !MGS or ! SELF qualifiers.
!MAKE tells ASReml to make the A-inverse (rather than trying to retrieve it from the ainverse.bin file).
!MGS indicates that the third identity is the sire of the dam rather than the dam.
!REPEAT tells ASReml to ignore repeat occurrences of lines in the pedigree file.
Warning Use of this option will avoid the check that animals occur in chronological order, but chronological order is still required.
!SELF \(s \quad\) allows partial selfing when third field is unknown. It indicates that progeny from a cross where the second parent (male_parent) is unknown, is assumed to be from selfing with probability \(s\) and from outcrossing with probability \((1-s)\). This is appropriate in some forestry tree breeding studies where seed collected from a tree may have been pollinated by the mother tree or pollinated by some other tree (Dutkowski and Gilmour, 2001). Do not use the ! SELF qualifier with the ! INBRED or ! MGS qualifiers.
allows you to skip \(n\) header lines at the top of the file.

New
causes ASReml to sort the pedigree into an acceptable order, that is parents before offspring, before forming the A-Inverse. The sorted pedigree is written to a file whose name has . srt appended to its name.

\subsection*{9.6 Reading a user defined inverse relationship matrix}

Sometimes an inverse relationship matrix is required other than the one ASReml can produce from the pedigree file. We call this a GIV (G inverse) matrix. The user can prepare a .giv file containing this matrix and use it in the analysis. Alternatively, the user can prepare the relationship matrix in a .grm file and ASReml will invert it to form the GIV matrix. The syntax for specifying a G matrix file (say name.grm) or the G inverse file (say name.giv) is
name.grm [!SKIP \(n\)]
or
name.giv [!SKIP \(n\)]
- the named file must have a .giv or .grm extension,
- the G (inverse) files must be specified on the line(s) immediately prior to the data file line after any pedigree file,
- up to 98 G (inverse) matrices may be defined,
- the file must be free format with three numbers per line, namely row column value
```

11
2 2 1
3 3 1
4 1
5 5 1.0666667
6 5 -0.2666667
6 6 1.0666667
7 7 1.0666667
8 7-0.2666667
8 8 1.0666667
9 9 1.0666667
10 9 -0.2666667
10 10 1.0666667
11 11 1.0666667
12 11 -0.2666667
12 12 1.0666667

```
defining the lower triangle row-wise of the matrix,
- the file must be sorted column within row,
- every diagonal element must be represented; missing off-diagonal elements are assumed to be zero cells,
- the file is used by associating it with a factor in the model. The number and order of the rows must agree with the size and order of the associated factor,
- the !SKIP \(n\) qualifier tells ASReml to skip \(n\) header lines in the file.

The .giv file presented in the code box gives the following G inverse matrix
\[
\left[\begin{array}{cc}
\boldsymbol{I}_{4} & \mathbf{0} \\
& \\
\mathbf{0} & \boldsymbol{I}_{4} \otimes\left[\begin{array}{rr}
1.067 & -0.267 \\
-0.267 & 1.067
\end{array}\right]
\end{array}\right]
\]

The .giv file can be associated with a factor in two ways:
- the first is to declare a G structure for the model term and to refer to the .giv file with the corresponding identifier GIV1, GIV2, GIV3, \(\cdots\), ; for example,
animal 1
animal 0 GIV1 0.12
site.variety 2 for a two-dimensional structure.
site 0 CORUH 0.5
\(8 * 1.5\)
variety 0 GIV1
for a one-dimensional structure put the scale parameter (0.12 in this case) after the GIV \(g\) identifier,
- the second is for one-dimensional structures; in this case the .giv structure can be directly associated with the term using the \(\operatorname{giv}(f, i)\) model function which associates the \(i\) th .giv file with factor \(f\), for example,
```

giv(animal,1) 0.12

```
is equivalent to the first of the preceding examples.

\section*{The example continued}

Below is an extension of harvey. as to use harvey.giv which is partly shown to the right. This G inverse matrix is an identity matrix of order 74 scaled by 0.5 , that is, \(0.5 \boldsymbol{I}_{74}\). This model is simply an example which is easy to verify. Note that harvey.giv is specified on the line immediately preceding harvey.dat.

Model term specification associating the harvey.giv structure to the coding of sire takes precedence over the relationship matrix structure implied by the ! P qualifier for sire. In this case, the ! \(P\) is being used to amalgamate animals and sires into a single list.
command file
```

GIV file example
animal !P
sire !P
dam
lines 2
damage
adailygain
harvey.ped !ALPHA
harvey.giv \# giv structure file
harvey.dat
adailygain ~ mu line, !r giv(sire,1) . 25

```
.giv file
```

01 01 . 5
02 02 . 5
03 03 . 5
04 04 . 5
05 05 . 5
.
.
72 72 . 5
73 73 . 5
74 74 . 5

```

\title{
10 \\ Tabulation of the data and prediction from the model
}

\section*{Introduction}

Tabulation
Prediction
Underlying principles

Syntax

Examples

\subsection*{10.1 Introduction}

This chapter describes the tabulate directive and the predict directive introduced in Section 3.4 under Prediction.

Tabulation is the process of forming simple tables of averages and counts from the data. Such tables are useful for looking at the structure of the data and numbers of observations associated with factor combinations. Multiple tabulate directives may be specified in a job.

Prediction is the process of forming a linear function of the vector of fixed and random effects in the linear model to obtain an estimated or predicted value for a quantity of interest. It is primarily used for predicting tables of adjusted means. If a table is based on a subset of the explanatory variables then the other variables need to be accounted for. It is usual to form a predicted value either at specified values of the remaining variables, or averaging over them in some way.

\subsection*{10.2 Tabulation}

A tabulate directive is provided to enable simple summaries of the data to be formed for the purpose of checking the structure of the data. The summaries are based on the same records as are used in the analysis of the model (i.e. leaving out records eliminated from the analysis because of missing values in variates and factors in the model). Multiple tabulate statements are permitted either immediately before or after the linear model. If a linear (mixed) model is not supplied, tabulation is based on all records.

The tabulate statement has the form
```

tabulate response_variables [!WT weight !COUNT !DECIMALS [d] !SD !RANGE
!STATS !FILTER filter !SELECT value] ~ factors

```
- tabulate is the directive name and must begin in column 1 ,
- response_variables is a list of variates for which means are required,
- !WT weight nominates a variable containing weights,
- ! Count requests counts as well as means to be reported,

New - !DECIMALS \([d](1 \leq d \leq 7)\) requests means be reported with \(d\) decimal places. If omitted, ASReml reports 5 significant digits; if specified without an argument, 2 decimal places are reported,
- ! RANGE requests the minimum and maximum of each cell be reported,
- !SD requests the standard deviation within each cell be reported,

New - !STATS is shorthand for ! COUNT ! SD ! RANGE,
- !FILTER filter nominates a factor for selecting a portion of the data,
- !SELECT value indicates that only records with value in the filter column are to be included,
- ~ factors identifies the factors to be used for classifying the data. Only factors (not covariates) may be nominated and no more than six may be nominated.

ASReml prints the multiway table of means omitting empty cells to a file with extension .tab.

\subsection*{10.3 Prediction}

\section*{Underlying principles}

Our approach to prediction is a generalization of that of Lane and Nelder (1982) who consider fixed effects models. They form fitted values for all combinations of the explanatory variables in the model, then take marginal means across the explanatory variables not relevent to the current prediction. Our case is more general in that random effects can be fitted in our (mixed) models. A full description can be found in Gilmour et al. (2004) and Welham et al. (2004).

Random factor terms may contribute to predictions in several ways. They may be evaluated at values specified by the user, they may be averaged over, or they may be omitted from the fitted values used to form the prediction. Averaging over the set of random effects gives a prediction specific to the random effects observed. We call this a 'conditional' prediction. Omitting the term from the model produces a prediction at the population average (zero), that is, substituting the assumed population mean for an unknown random effect. We call this a 'marginal' prediction. Note that in any prediction, some terms may be evaluated as conditional and others at marginal values, depending on the aim of prediction.

For fixed factors there is no pre-defined population average, so there is no natural interpretation for a prediction derived by omitting a fixed term from the fitted values. Averages must therefore be taken over all the levels present to give a sample specific average, or prediction must be at specified levels.

For covariate terms (fixed or random) the associated effect represents the coefficient of a linear trend in the data with respect to the covariate values. These terms should be evaluated at a given value of the covariate, or averaged over several given values. Omission of a covariate from the predictive model is equivalent to predicting at a zero covariate value, which is often inappropriate.

Interaction terms constructed from factors generate an effect for each combination of the factor levels, and behave like single factor terms in prediction. Interactions constructed from covariates fit a linear trend for the product of the covariate values and behave like a single covariate term. An interaction of a factor and a covariate fits a linear trend for the covariate for each level of the factor. For both fixed and random terms, a value for the covariate must be given, but the factor may be evaluated at a given level, averaged over or (for random terms) omitted.

Before considering some examples in detail, it is useful to consider the conceptual steps involved in the prediction process. Given the explanatory variables used to define the linear (mixed) model, the four main steps are
(a) Choose the explanatory variable(s) and their respective value(s) for which predictions are required; the variables involved will be referred to as the classify set and together define the multiway table to be predicted.
(b) Determine which variables should be averaged over to form predictions. The values to be averaged over must also be defined for each variable; the variables involved will be referred to as the averaging set. The combination of the classify set with these averaging variables defines a multiway hyper-table. Note that variables evaluated at only one value, for example, a covariate at its mean value, can be formally introduced as part of the classifying or averaging set.
(c) Determine which terms from the linear mixed model are to be used in forming predictions for each cell in the multiway hyper-table in order to give appropriate conditional or marginal prediction.
(d) Choose the weights to be used when averaging cells in the hyper-table to produce the multiway table to be reported.

Note that after steps (a) and (b) there may be some explanatory variables in the fitted model that do not classify the hyper-table. These variables occur in terms that are ignored when forming the predicted values. It was concluded above that fixed terms could not sensibly be ignored in forming predictions, so that variables
should only be omitted from the hyper-table when they only appear in random terms. Whether terms derived from these variables should be used when forming predictions depends on the application and aim of prediction.

The main difference in this prediction process compared to that described by Lane and Nelder (1982) is the choice of whether to include or exclude model terms when forming predictions. In linear models, since all terms are fixed, terms not in the classify set must be in the averaging set.

\section*{Predict syntax}

The first step is to specify the classify set of explanatory variables after the predict directive. The predict statement(s) may appear immediately after the model line (before or after any tabulate statements) or after the R and G structure lines. The syntax is
predict factors [qualifiers]
- predict must be the first element of the
```

NIN Alliance trial }198
variety !A
\vdots
column 11
nin89.asd !skip 1
yield ~ mu variety !r repl
predict variety
O 0 1
repl 1
repl 0 IDV 0.1

```
predict statement, commencing in column 1 in upper or lower case,
- factors is a list of the variables defining a multiway table to be predicted; each variable may be followed by a list of specific values to be predicted,
- the qualifiers, listed in Table 10.1, instruct ASReml to modify the predictions in some way,
- a predict statement may be continued on subsequent lines by terminating the current line with a comma,
- several predict statements may be specified.

ASReml parses the predict statement before fitting the model. If any syntax problems are encountered, these are reported in the .pvs file after which the statement is ignored: the job is completed as if the erroneous prediction statement did not exist. The predictions are formed as an extra process in the final iteration and are reported to the .pvs file. Consequently, aborting a run by creating the ABORTASR. NOW file (see page 65) will cause any predict statements to be ignored.

By default, factors are predicted at each level, simple covariates are predicted at their overall mean and covariates used as a basis for splines or orthogonal
polynomials are predicted at their design points. Covariates grouped into a single term (using ! G qualifier page 49) are treated as covariates.

Model terms mv and units are always ignored.

Prediction at particular values of a covariate or particular levels of a factor is achieved by listing the values after the variate/factor name. Where there is a sequence of values, use the notation \(a b \ldots n\) to represent the sequence of values from \(a\) to \(n\) with step size \(b-a\). The default stepsize is 1 (in which case \(b\) may be omitted). A colon (:) may replace the ellipsis (...). An increasing sequence is assumed. When giving particular values for factors, the default is to use the coded level (1:n) rather than the label (alphabetical or integer). To use the label, precede it with a quote (").

The second step is to specify the averaging set. The default averaging set is those explanatory variables involved in fixed effect model terms that are not in the classifying set. By default variables that only define random model terms are ignored. The qualifier !AVERAGE allows these variables to be added to the default averaging set.

The third step is to select the linear model terms to use in prediction. The default is that all model terms based entirely on variables in the classifying and averaging sets are used. Two qualifiers allow this default to be modified by adding (!USE) or removing (!IGNORE) model terms. The qualifier ! ONLYUSE explicitly specifies the model terms to use, ignoring all others. The qualifier ! EXCEPT explicitly specifies the model terms not to use, including all others. These qualifiers may implicitly modify the averaging set by including variables defining terms in the predicted model not in the classify set. It is sometimes easier to specify the classify set and the model terms to use and allow ASReml to construct the averaging set.

The fourth step is to choose the weights to use when averaging over dimensions in the hyper-table. The default is to simply average over the specified levels but the qualifier ! AVERAGE factor weights allows other weights to be specified.

For example,
yield ~ site variety !r site.variety at(site).block
predict variety
puts variety in the classify set, site in the averaging set and block in the ignore set. Consequently, ASReml forms the site \(\times\) variety hyper-table from model terms site, variety and site.variety but ignoring all terms in at (site).block,
and then forms averages across sites to produce variety predictions.
There are often situations in which the fixed effects design matrix X is not of full column rank. These can be classified according to the cause of aliasing.
1. linear dependencies among the model terms due to over-parameterisation of the model,
2. no data present for some factor combinations so that the corresponding effects cannot be estimated,
3. linear dependencies due to other, usually unexpected, structure in the data.

The first type of aliasing is imposed by the parameterisation chosen and can be determined from the model. The second type of aliasing can be detected when setting up the design matrix for parameter estimation (which may require revision of imposed constraints). The third type can then be detected during the absorption of the mixed model equations. Dependencies (aliasing) can be dealt with in several ways and ASReml checks that predictions are of estimable functions in the sense defined by Searle (1971, p160) and are invariant to the constraint method used.

ASReml doesn't print predictions of non-estimable functions unless the !PRINTALL qualifier is specified. However, using !PRINTALL is rarely a satisfactory solution. Failure to report predicted values normally means that the predict statement is averaging over some cells of the hyper-table that have no information and therefore cannot be averaged in a meaningful way. Appropriate use of the ! AVERAGE and/or !PRESENT qualifiers will usually resolve the problem. The !PRESENT qualifier enables the construction of means by averaging only the estimable cells of the hyper-table. It is reguarly used for nested factors, for example locations nested in regions.

Table 10.1 is a list of the prediction qualifiers with the following syntax:
- \(f\) is an explanatory variable which is a factor,
- \(t\) is a list of terms in the fitted model,
- \(v\) is a list of explanatory variables.

Table 10.1: List of prediction qualifiers
qualifier action

\section*{Controlling formation of tables}
!AVERAGE \(f\) [weights] is used to formally include a variable in the averaging set and to explicitly set the weights for averaging. Variables that only appear in random model terms are not included in the averaging set unless included with this qualifier. The default for weights is equal weights. weights can be expressed like \(\{3 * 102 * 1\} / 5\) to represent the sequence 0.20 .20 .200 .20 .2 . The string inside the curly brace is expanded first and the expression \(n^{*} v\) means \(n\) occurrences of \(v\). A separate ! AVERAGE qualifier is required for each variable requiring explicit weights or to be added to the default averaging set.
!PARALLEL [\(v\)]
!PRESENT v New
!PRWTS v is used in conjunction with the first !PRESENT factors to specify
without arguments means all classify variables are expanded in parallel. Otherwise list the variables from the classify set whose levels are to be taken in parallel.
is used when averaging is to be based only on cells with data. \(v\) is a list of variables and may include variables in the classify set. \(v\) may not include variables with an explicit ! AVERAGE qualifier. The variable names in \(v\) may optionally be followed by a list of levels for inclusion if such a list has not been supplied in the specification of the classify set. ASReml works out what combinations are present from the design matrix

A second !PRESENT qualifier is allowed on a predict statement (but not with ! PRWTS). This is needed when there are two nested factors such as sites within regions and genotype within family. The two lists must not overlap. the weights that ASReml will use for averaging that ! PRESENT table. More details are given below.

\section*{Controlling inclusion of model terms}
! EXCEPT \(t \quad\) causes the prediction to include all fitted model terms not in \(t\).
!IGNORE \(t\)
causes ASReml to set up a prediction model based on the default rules and then removes the terms in \(t\). This might be used to omit the spline Lack of fit term (! IGNORE fac (x)) from predictions as in
yield \(\sim\) mu \(x\) variety \(!r \operatorname{spl}(x)\) fac \((x)\)
predict \(x\) !IGNORE fac(x)
which would predict points on the spline curve averaging over variety.

\section*{List of prediction qualifiers}
qualifier action

\section*{!ONLYUSE \(t\)}

\section*{Printing}
causes the prediction to include only model terms in \(t\). It can be used for example to form a table of slopes as in
```

HI ~ mu X variety X.variety
predict variety X 1 !onlyuse X X.variety

```
causes ASReml to set up a prediction model based on the default rules and then adds the terms listed in \(t\).
gives the user control of the number of decimal places reported in the table of predicted values where \(n\) is \(0 \ldots 9\). The default is 4. G15.9 format is used if \(n\) exceeds 9 .

When !VVP or !SED are used, the values are displayed with 6 significant digits unless \(n\) is specified and even; then the values are displayed with 9 significant digits.
instructs ASReml to attempt a plot of the predicted values. This qualifier is only applicable in versions of ASReml linked with the Winteracter Graphics library. If there is no argument, ASReml produces a figure of the predicted values as best it can. The user can modify the appearance by typing <Esc> to expose a menu or with the plot arguments listed in Table 10.2.
!PRINTALL \(\quad\) instructs ASReml to print the predicted value, even if it is not of an estimable function. By default, ASReml only prints predictions that are of estimable functions.
requests all standard errors of difference be printed. Normally only an average value is printed.
requests \(t\)-statistics be printed for all combinations of predicted values.
requests ASReml to scan the predicted values from a fitted line for possible turning points and if found, report them and save them internally in a vector which can be accessed by subsequent parts of the same job using \$TPn. This was added to facilitate location of putative QTL.
is intended for use with variety trials which will subsequently be combined in a meta analysis. It forms the variance matrix for the predictions, inverts it and writes the predicted variety means with the corresponding diagonal elements of this matrix to the .pvs file. These values are used in some variety testing programs in Australia for a subsequent second stage analysis across many trials. A data base is used to collect the results from the individual trials and write out the combined data set. The diagonal elements are used as weights in the combined analysis.
\begin{tabular}{ll}
& List of prediction qualifiers \\
qualifier & action \\
\hline\(!\) VPV & \begin{tabular}{l}
requests that the variance matrix of predicted values be printed \\
to the .pvs file.
\end{tabular}
\end{tabular}

\section*{PLOT graphic control qualifiers}

This functionality was developed and this section was written by Damian Collins.
New The !PLOT qualifier produces a graphic of the predictions. Where there is more than one prediction factor, a multi-panel 'trellis' arrangement may be used. Alternatively, one or more factors can be superimposed on the one panel. The data can be added to the plot to assist informal examination of the model fit.

With no plot options, ASReml chooses an arrangement for plotting the predictions by recognising any covariates and noting the size of factors. However, the user is able to customize how the predictions are plotted by either using options to the !PLOT qualifier or by using the graphical interface. The graphical interface is accessed by typing Esc when the figure is displayed.

The !PLOT qualifier has the following options:
Table 10.2: List of predict plot options
option action
Lines and data
addData
-addlabels factors
superimposes the raw data.
superimposes the raw data with the data points labelled using the given factors (which must not be prediction factors). This option may be useful to identify individual data points on the graph - for instance, potential outliers - or alternatively, to identify groups of data points (e.g. all data points in the same stratum).

\section*{List of predict plot options}
option action
\begin{tabular}{ll}
^addlines factors & \begin{tabular}{l}
superimposes the raw data with the data points joined using the \\
given factors which must not be prediction factors. This option \\
may be useful for repeated measures data.
\end{tabular} \\
"noSEs & \begin{tabular}{l}
specifies that no error bars should be plotted (by default, they \\
are plotted)
\end{tabular} \\
"semult \(r\) & \begin{tabular}{l}
specifies the multiplier of the SE used for creating error bars \\
(default=1.0)
\end{tabular} \\
"joinmeans & \begin{tabular}{l}
specifies that the predicted values should be joined by lines (by \\
default, they are only joined if the x-axis variable is numeric)
\end{tabular}
\end{tabular}

\section*{Predictions involving two or more factors}

If these arguments are used, all prediction factors (except for those specified with only one prediction level) must be listed once and only once, otherwise these arguments are ignored.
*xaxis factor
superimpose factors
condition factors specifies the prediction factor to be plotted on the x -axis specifies the prediction factors to be superimposed on the one panel.
specifies the conditioning factors which define the panels. These should be listed in the order that they will be used.

\section*{Layout}
goto \(n \quad\) specifies the page to start at, for multi-page predictions.
saveplot filename
^layout rows cols
^bycols
^blankpanels \(n\)
specifies the name of the file to save the plot to.
specifies the panel layout on each page
specifies that the panels be arranged by columns (default is by rows)
specifies that each page contains n blank panels. This sub-option can only be used in combination with the layout sub-option.
^extrablanks \(n \quad\) and \(\quad\) specifies that an additional \(n\) blank panels be used every \(p\) pages
^extraspan \(p\)
These can only be used with the layout sub-option.
Improving the graphical appearance (and readability)
\begin{tabular}{ll}
"labcharsize \(n\) & specifies the relative size of the data points/labels (default=0.4) \\
"panelcharsize \(n\) & \begin{tabular}{l}
specifies the relative size of the labels used for the panels (de- \\
fault=1.0)
\end{tabular} \\
"vertxlab & \begin{tabular}{l}
specifies that vertical annotation be used on the x-axis (default \\
is horizontal).
\end{tabular}
\end{tabular}
\begin{tabular}{ll}
& \multicolumn{1}{c}{ List of predict plot options } \\
option & action \\
\hline ^abbrdlab \(n\) & \begin{tabular}{l}
specifies that the labels used for the data be abbreviated to \(n\) \\
characters.
\end{tabular} \\
^abbrxlab \(n\) & \begin{tabular}{l}
specifies that the labels used for the x-axis annotation be appre- \\
viated to \(n\) characters.
\end{tabular} \\
abbrslab \(n\) & \begin{tabular}{l}
specifies that the labels used for superimposed factors be abbre- \\
viated to \(n\) characters.
\end{tabular}
\end{tabular}

\section*{Complicated weighting}

New Generally, when forming a prediction table, it is necessary to average over (or ignore) some potential dimensions of the prediction table. By default, ASReml uses equal weights (\(1 / f\) for a factor with \(f\) levels). More complicated weighting is achieved by using the ! AVERAGE qualifier to set specific (unequal) weights for each level of a factor. However, sometimes the weights to be used need to be defined with respect to two or more factors. The simplest case is when there are missing cells and weighting is equal for those cells in a multiway table that are present; achieved by using the !PRESENT qualifier. This is now further generalized by allowing the user to fill in the weights for use by the !PRESENT machinery via the !PRWTS qualifier.

The user specifies the factors in the table of weights with the !PRESENT statement and then gives the table of weights using the !PRWTS qualifier. There may only be one !PRESENT qualifier on the predict line when !PRWTS is specified. The order of factors in the tables of weights must correspond to the order in the ! PRESENT list with later factors nested within preceding factors. Check the output to ensure that the values in the tables of weights are applied in the correct order. ASReml may transpose the table of weights to match the order it needs for processing.

Consider a rather complicated example from a rotation experiment conducted over several years. This particular analysis followed the analysis of the daily live weight gain per hectare of the sheep grazing the plots. There were periods when no sheep grazed. Different flocks grazed in the different years. Daily liveweight
gain was assessed between 5 and 8 times in the various years. To obtain a measure of total productivity in terms of sheep liveweight, we need to weight the daily per sheep figures by the number of sheep grazing days per month. To obtain treatment effects for each year, the experimenter used
```

predict year 1 crop 1 pasture lime !AVE month 56 55 56 53 57 63 6*0
predict year 2 crop 1 pasture lime !AVE month 36 0 0 53 23 24 54 54 43 35 0 0
predict year 3 crop 1 pasture lime !AVE month 70 0 21 17 0 0 0 70 0 0 53 0
predict year 4 crop 1 pasture lime !AVE month 53 56 22 92 19 44 0 0 36 0 0 49
predict year 5 crop 1 pasture lime !AVE month 0 22 0 53 70 22 0 51 16 51 0 0

```
but then wanted to average over years as well. Both of the following predict statements produce the required values.
```

predict crop 1 pasture lime !PRES year month !PRWTS { 56 55 56 53 57 63 0 0 0,
0 0 0 36 0 0 53 23 24 54 54 43 35 0 0 70 0 21 17 00 0 0 0 70 0 0 53 0 53,
56 22 92 19 44 0 0 0 36 0 0 4 49 0 22 0 53 70 22 0 51 51 16 51 0 0, 0}/5
predict crop 1 pasture lime !PRES month year !PRWTS { 56 36 70 53 0,
55 0 0 56 22 56 0 21 22 0 5 53 53 17 92 53 57 23 0 19 70 63 24 0 44 22,
0 54 0 0 0 0 54 70 0 51 0 43 0 36 16 0

```

We have presented both sets of predict statements to show how the weights were derived and presented. Notice that the order in ! PRESENT year month implies that the weight coefficients are presented in standard order with the levels for months cycling within levels for years. There is a check which reports if non zero weights are associated with cells that have no data. The weights are reported in the .pvs file. !PRESENT counts are reported in the .res file.

\section*{Examples}

Examples are as follows:
```

yield ~ mu variety !r repl

```
predict variety
is used to predict variety means in the NIN field trial analysis. Random repl is ignored in the prediction.
```

yield ~ mu x variety !r repl
predict variety

```
predicts variety means at the average of x ignoring random repl.
```

yield ~ mu x variety repl
predict variety x 2

```
forms the hyper-table based on variety and repl at the covariate value of 2 and
then averages across repl to produce variety predictions.
GFW Fdiam \(\sim\) Trait Trait. Year !r Trait. Team predict Trait Team
forms the hyper-table for each trait based on Year and Team with each linear combination in each cell of the hyper-table for each trait using Team and Year effects. Team predictions are produced by averaging over years.
yield ~ variety !r site.variety
predict variety
will ignore the site. variety term in forming the predictions while
```

predict variety !AVERAGE site

```
forms the hyper-table based on site and variety with each linear combination in each cell using variety and site.variety effects and then forms averages across sites to produce variety predictions.
yield ~ site variety !r site.variety at(site).block
predict variety
puts variety in the classify set, site in the averaging set and block in the ignore set. Consequently, it forms the site×variety hyper-table from model terms site, variety and site.variety but ignoring all terms in at(site).block, and then forms averages across sites to produce variety predictions.

\title{
Functions of variance \\ components
}

\section*{Introduction}

Syntax
Linear combinations of components
Heritability
Correlation
A more detailed example

\subsection*{11.1 Introduction}

ASReml includes a post-analysis procedure to calculate functions of variance components. Its intended use is when the variance compo-
```

F phenvar 1 + 2 \# pheno var
F genvar 1 * 4 \# geno var
H herit 4 3 \# heritability

``` nents are either simple variances or are variances and covariances in an unstructured matrix. The functions covered are linear combinations of the variance components (for example, phenotypic variance), a ratio of two components (for example, heritabilities) and the correlation based on three components (for example, genetic correlation). The user must prepare a .pin file. A simple sample .pin file is shown in the ASReml code box above. The .pin file specifies the functions to be calculated. The user re-runs ASReml with the -P command line option specifying the . pin file as the input file. ASReml reads the model information from the .asr and .vvp files and calculates the requested functions. These are reported in the .pvc file.

\subsection*{11.2 Syntax}

Functions of the variance components are specified in the .pin file in lines of the form
letter label coefficients
- letter (either F, H or R) must occur in column 1
- F is for linear combinations of variance components,
- H is for forming the ratio of two components,
\(-R\) is for forming the correlation based on three components,
- label names the result,
- coefficients is the list of coefficients for the linear function.

\section*{Linear combinations of components}

First ASReml extracts the variance components from the .asr file and their variance matrix from the .vvp file. Each linear function formed by an \(F\) line is added to the list of

\footnotetext{
F phenvar \(1+2\) \# pheno var F genvar 1 * 4 \# geno var
H herit 43 \# heritability
} components. Thus, the number of coefficients increases by one each line. We seek to calculate \(k+\boldsymbol{c}^{\prime} \boldsymbol{v}, \operatorname{cov}\left(\boldsymbol{c}^{\prime} \boldsymbol{v}, \boldsymbol{v}\right)\) and \(\operatorname{var}\left(\boldsymbol{c}^{\prime} \boldsymbol{v}\right)\) where \(\boldsymbol{v}\) is the vector of existing variance components, \(\boldsymbol{c}\) is the vector of coefficients for the linear function and \(k\) is an optional offset which is usually omitted but would be 1 to represent the
residual variance in a probit analysis and 3.289 to represent the residual variance in a logit analysis. The general form of the directive is
F label \(a+b * c_{b}+c+d+m * k\)
where \(a, b, c\) and \(d\) are subscripts to existing components \(v_{a}, v_{b}, v_{c}\) and \(v_{d}\) and \(c_{b}\) is a multiplier for \(v_{b} . m\) is a number bigger than the current length of \(v\) to flag the special case of adding the offset \(k\). Where matrices are to be combined the form

F label \(a: b^{*} k+c: d\)
can be used, as in the Coopworth data example, see page 300.
Assuming that the .pin file in the ASReml code box corresponds to a simple sire model and that variance component 1 is the sire variance and variance component 2 is the residual variance, then
```

F phenvar 1 + 2

```
gives a third component which is the sum of the variance components, that is, the phenotypic variance, and

F genvar 1*4
gives a fourth component which is the sire variance component multiplied by 4 , that is, the genotypic variance.

\section*{Heritability}

Heritabilities are requested by lines in the .pin file beginning with an H. The specific form of the directive in this case is
```

F phenvar 1 + 2 \# pheno var
F genvar 1 * 4 \# geno var
H herit 4 3 \# heritability

```

H label \(n d\)
This calculates \(\sigma_{n}^{2} / \sigma_{d}^{2}\) and se \(\left[\sigma_{n}^{2} / \sigma_{d}^{2}\right]\) where \(n\) and \(d\) are integers pointing to components \(v_{n}\) and \(v_{d}\) that are to be used as the numerator and denominator respectively in the heritability calculation.
\(\operatorname{Var}\left(\frac{\sigma_{n}^{2}}{\sigma_{d}^{2}}\right)=\left(\frac{\sigma_{n}^{2}}{\sigma_{d}^{2}}\right)^{2}\left(\frac{\operatorname{Var}\left(\sigma_{n}^{2}\right)}{\sigma_{n}^{4}}+\frac{\operatorname{Var}\left(\sigma_{d}^{2}\right)}{\sigma_{d}^{4}}-\frac{2 \operatorname{Cov}\left(\sigma_{n}^{2}, \sigma_{d}^{2}\right)}{\sigma_{n}^{2} \sigma_{d}^{2}}\right)\)
In the example
H herit 43
calculates the heritability by calculating component 4 (from second line of .pin)
/ component 3 (from first line of .pin), that is, genetic variance / phenotypic variance.

\section*{Correlation}

Correlations are requested by lines in the .pin file beginning with an \(R\). The specific form of the directive is
```

F phenvar 1:3 + 4:6
R phencorr 7 8 9
R gencorr 4:6

```

R label \(a \mathrm{ab} b\)
This calculates the correlation \(r=\sigma_{a b} / \sqrt{\sigma_{a}^{2} \sigma_{b}^{2}}\) and the associated standard error. \(a, b\) and \(a b\) are integers indicating the position of the components to be used. Alternatively,
R label a:n
calculates the correlation \(r=\sigma_{a b} / \sqrt{\sigma_{a}^{2} \sigma_{b}^{2}}\) for all correlations in the lower triangular row-wise matrix represented by components \(a\) to \(n\) and the associated standard errors.
\[
\begin{gathered}
\operatorname{var}(r)=r^{2}\left[\frac{\operatorname{var}\left(\sigma_{a}^{2}\right)}{4 \sigma_{a}^{2}}+\frac{\operatorname{var}\left(\sigma_{b}^{2}\right)}{4 \sigma_{b}^{2}}+\frac{\operatorname{var}\left(\sigma_{a b}\right)}{\sigma_{a b}^{2}}\right. \\
\left.+\frac{2 \operatorname{cov}\left(\sigma_{a}^{2}\right) \sigma_{b}^{2}}{4 \sigma_{a}^{2} \sigma_{b}^{2}}-\frac{2 \operatorname{cov}\left(\sigma_{a}^{2}\right) \sigma_{a b}}{2 \sigma_{a}^{2} \sigma_{a b}}-\frac{2 \operatorname{cov}\left(\sigma_{a b}\right) \sigma_{b}^{2}}{2 \sigma_{a b} \sigma_{b}^{2}}\right]
\end{gathered}
\]

In the example
R phencorr 789
calculates the phenotypic covariance by calculating
component \(8 / \sqrt{\text { component } 7 \times \text { component } 9}\) where components 7,8 and 9 are created with the first line of the .pin file, and
R gencorr 4:6
calculates the genotypic covariance by calculating
component \(5 / \sqrt{\text { component } 4 \times \text { component } 6}\) where components 4,5 and 6 are variance components from the analysis.

\section*{A more detailed example}

For convenience in preparing the .pin file, some users copy the variance component lines from the .asr file and insert them at the top of the .pin file, being careful to retain one leading space so that the lines will be just copied and otherwise ignored as the .pin file is processed.

The following sample .pin file is a little more complicated. It relates to the bivariate sire model in bsiremod.as shown in the code box to the right.

The first six lines of the .pin file contain the variance component table on which the .pin file is based, copied from the the .asr file for converience in coding the rest of the file.
\begin{tabular}{lllr}
Residual & UnStruct & 1 & 26.2197 \\
Residual & UnStruct & 1 & 2.85090 \\
Residual & UnStruct & 2 & 1.71556 \\
Tr.sire & UnStruct & 1 & 16.5262 \\
Tr.sire & UnStruct & 1 & 1.14422 \\
Tr. sire & UnStruct & 2 & 0.132847
\end{tabular}

F phenvar 1:3 + 4:6
F addvar 4:6*4
H heritA 107
H heritB 129
R phencorr 789
\(R\) gencor 4:6

Numbering the parameters reported in bsiremod.asr (and bsiremod.vvp)
1 error variance for ywt
2 error covariance for ywt and fat
3 error variance for fat
4 sire variance component for ywt
5 sire covariance for ywt and fat
6 sire variance for fat
then

F phenvar 1:3 + 4:6
creates new components \(\mathbf{7}=\mathbf{1}+\mathbf{4}, \mathbf{8}=\mathbf{2}+\mathbf{5}\) and \(\mathbf{9}=\mathbf{3}+\mathbf{6}\),
F addvar 4:6*4
creates new components \(\mathbf{1 0}=\mathbf{4} \times 4, \mathbf{1 1}=\mathbf{5} \times 4\) and \(\mathbf{1 2}=\mathbf{6} \times 4\),
H heritA 107
forms 10 / \(\mathbf{7}\) to give the heritability for ywt,
H heritB 129
forms 12 / 9 to give the heritability for fat,
R phencorr 789
forms \(\mathbf{8} / \sqrt{\mathbf{7} \times \mathbf{9}}\), that is, the phenotypic correlation between ywt and fat,
R gencorr 4:6
forms \(5 / \sqrt{\mathbf{4} \times \mathbf{6}}\), that is, the genetic correlation between ywt and fat.

The result is:
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & 7 phenvar & & 42.75 & 6.297 & & & \\
\hline 8 & phenvar & 2 & 3.995 & 0.6761 & & & \\
\hline 9 & phenvar & 3 & 1.848 & 0.1183 & & & \\
\hline 10 & addvar & 4 & 66.10 & 24.58 & & & \\
\hline & addvar & 5 & 4.577 & 2.354 & & & \\
\hline & addvar & 6 & 0.5314 & 0.2831 & & & \\
\hline & h2ywt & & = addvar & 10/phenvar & \(7=\) & 1.5465 & 0.3574 \\
\hline & h2fat & & = addvar & 12/phenvar & \(9=\) & 0.2875 & 0.1430 \\
\hline & phencorr & & = phenvar & QR [phenvar & envar]= & 0.4495 & 0.0483 \\
\hline & gencor & 2 & \(=\operatorname{Tr} . \mathrm{si}\) & SQR[Tr.si & .si 6]= & 0.7722 & 0.1537 \\
\hline
\end{tabular}

\title{
12 Command file: Running the job
}

\section*{Introduction \\ The command line}

Normal run
Processing a .pin file
Forming a job template

\section*{Command line options}

Prompt for arguments
Output control command line options
Debug command line options
Graphics command line options
Job control command line options
Workspace command line options
Menu command line options
Non-graphics command line options
Examples

\section*{Advanced processing arguments}

Standard use of arguments
Prompting for input
Paths and Loops

\subsection*{12.1 Introduction}

The command line, its options and arguments are discussed in this chapter. Command line options enable more workspace to be accessed to run the job, control some graphics output and control advanced processing options. Command line arguments are substituted into the job at run time.

As Windows likes to hide the command line, most command line options can be set on an optional initial line of the .as file we call the top job control line to distinguish it from the other job control lines discussed in Chapter 6. If the first line of the .as file contains a qualifier other than !DOPATH, it is interpreted as setting command line options and the Title is taken as the next line.

\subsection*{12.2 The command line}

\section*{Normal run}

The basic command to run ASReml is
[path] ASReml basename[.as[c]]
- path provides the path to the ASReml program (usually called asreml.exe in a PC environment). In a UNIX environment, ASReml is usually run through a shell script called ASReml.
- if the ASReml program is in the search path then path is not required and the word ASReml will suffice; for example
```

ASReml nin89.as

```
will run the NIN analysis,
- if asreml.exe(ASReml) is not in the search path then path is required, for example, if asreml.exe is in the usual place then
c: \Program Files \(\backslash\) ASRem12 \(\backslash\) bin \(\backslash\) Asreml nin89.as will run nin89.as,
- ASReml invokes the ASReml program,
- basename is the name of the .as[c] command file.

The basic command line can be extended with options and arguments to
[path] ASReml [options] basename[.as[c]] [arguments]
- options is a string preceded by a - (minus) sign. Its components control several operations (batch, graphic, workspace, ...) at run time; for example, the command line
```

ASReml -w128 rat.as

```
tells ASReml to run the job rat.as with workspace allocation of 128 mb ,
- arguments provide a mechanism (mostly for advanced users) to modify a job at run time; for example, the command line

ASReml rat.as alpha beta
tells ASReml to process the job in rat. as as if it read alpha wherever \(\$ 1\) appears in the file rat.as, beta wherever \(\$ 2\) appears and 0 wherever \(\$ 3\) appears (see below).

\section*{Processing a .pin file}

If the filename argument is a . pin file, (see Chapter 11), then ASReml processes it. If the pinfile basename differs from the basename of the output files it is processing, then the basename of the output files must be specified with the \(P\) option letter. Thus

ASReml border.pin
will perform the pinfile calculations defined in border.pin on the results in files border.asr and border.vvp.

ASReml -Pborderwwt border.pin
will perform the pinfile calculations defined in border.pin on the results in files borderwwt.asr and borderwwt.vvp.

\section*{Forming a job template from data file}

The facility to generate a template . as file has been moved to the command line, and extended. Normally, the name of a .as command file is specified on the
New command line. If a .as file does not exist and a file with file extension .asd, .csv, . dat, .gsh, .txt or .xls is specified, ASReml assumes the data file has field labels in the first row and generates a .as file template. First, it seeks to convert the .gsh (Genstat) or .xls (Excel, see page 44) file to .csv format using the ASRemload.dll utility provided by VSN. In generating the .as template, ASReml
takes the first line of the .csv (or other) file as providing column headings, and generates field definition lines from them. If some labels have! appended, these are defined as factors, otherwise ASReml attempts to identify factors from the field contents. The template needs further editing before it is ready to run but does have the field names copied across.

\subsection*{12.3 Command line options}

Command line options and arguments may be specified on the command line or New on the top job control line. This is an optional first line of the .as file which sets command line options and arguments from within the job. If the first line of the .as file contains a qualifier other than !DOPATH, it is interpreted as setting command line options and the Title is taken as the next line.

The option string actually used by ASReml is the combination of what is on the command line and what is on the job control line, with options set in both places taking arguments from the command line. Arguments on the top job control line are ignored if there are arguments on the command line. This section defines the options. Arguments are discussed in detail in a following section.

Command line options are not case sensitive and are combined in a single string preceded by a - (minus) sign, for example -LNW128

The options can be set on the command line or on the first line of the job either as a concatenated string in the same format as for the command line, or as a list of qualifiers. For example, the command line
```

ASReml -h22r jobname 1 2 3 could be replaced with
ASReml jobname if the first line of jobname.as was either
!-h22r 1 2 3 or
!HARDCOPY !EPS !RENAME !ARGS 1 2 3

```

Table 12.1 presents the command line options available in ASReml with brief descriptions. It also specifies the equivalent qualifier name used on the top job control line. Detailed descriptions follow.

Table 12.1: Command line options
option \(\quad\) qualifier \(\quad\) type \(\quad\) action \begin{tabular}{l}
\hline
\end{tabular}

\section*{Frequently used command line options}
\begin{tabular}{llll}
C & !CONTINUE & job control & \begin{tabular}{l}
continue iterations using previous esti- \\
mates as initial values
\end{tabular} \\
F & !FINAL & job control & \begin{tabular}{l}
continue for one more iteration using \\
previous estimates as initial values
\end{tabular} \\
L & !LOGFILE & screen output & copy screen output to basename. asl \\
N & !NOGRAPHS & graphics & suppress interactive graphics \\
W \(w\) & !WORKSPACE \(w\) & workspace & set workspace size to \(w\) Mbyte
\end{tabular}

Other command line options
\begin{tabular}{|c|c|c|c|}
\hline & ! ARGS \(a\) & job control & to set arguments (a) in job rather than on command line \\
\hline A & ! ASK & job control & prompt for options and arguments \\
\hline Bb & ! BRIEF \(b\) & output control & reduce output to .asr file \\
\hline D & ! DEBUG & debug & invoke debug mode \\
\hline E & ! DEBUG 2 & debug & invoke extended debug mode \\
\hline Gg & ! GRAPHICS \(g\) & graphics & set interactive graphics device \\
\hline Hg & ! HARDCOPY \(g\) & graphics & set interactive graphics device, graphics screens not displayed \\
\hline I & ! INTERACTIVE & graphics & display graphics screen \\
\hline J & ! JOIN & output control & concatenate ! CYCLE output files \\
\hline 0 & ! ONERUN & job control & override rerunning requested by ! RENAME \\
\hline P & NA & post-processing & calculation of functions of variance components \\
\hline Q & ! QUIET & graphics & suppress screen output \\
\hline Rr & ! RENAME & job control & repeat run for each argument renaming output filenames \\
\hline Ss & NA & workspace & set workspace size \\
\hline \(\mathrm{Y} v\) & ! YVAR \(v\) & job control & over-ride \(y\)-variate specified in the command file with variate number \(v\) \\
\hline z & NA & license & reports current license details \\
\hline
\end{tabular}

\section*{Prompt for arguments (A)}

A (!ASK) makes it easier to specify command line options in Windows Explorer. One of the options available when right clicking a .as file, invokes ASReml with this option. ASReml then prompts for the options and arguments, allowing these to be set interactively at run time. With !ASK on the top job control line, it is assumed that no other qualifiers are set on the line. For example, a response of
\[
-h 22 r 123 \quad \text { would be equivalent to }
\]

ASReml -h22r basename 123

\section*{Output control (B, J)}

New B[b] (!BRIEF [b) suppresses some of the information written to the .asr file. The data summary and regression coefficient estimates are suppressed by the options B, B1 or B2. This option should not be used for initial runs of a job before you have confirmed (by checking the data summary) that ASReml has read the data as you intended. Use B2 to also have the predicted values written to the . asr file instead of the .pvs file. Use B-1 to get BLUE estimates reported in . asr file.

New J (!JOIN) is used in association with the !CYCLE qualifier to put the output from a set of runs into single files (see !CYCLE list ! JOIN on page 186).

\section*{Debug command line options (D, E)}

D and E (!DEBUG, !DEBUG 2) invoke debug mode and increase the information written to the screen or .asl file. This information is not useful to most users. On Unix systems, if ASReml is crashing use the system script command to capture the screen output rather than using the \(L\) option, as the .asl file is not properly closed after a crash.

\section*{Graphics command line options (G, H, I, N, Q)}

Graphics are produced in the PC, Linux and SUN 32bit versions of ASReml using the Winteracter graphics library.

The I (!INTERACTIVE) option permits the variogram and residual graphics to be displayed. This is the default unless the L option is specified.

The N (!NOGRAPHICS) option prevents any graphics from being displayed. This is also the default when the L option is specified.

The \(\mathrm{G} g\) (!GRAPHICS \(g\)) option sets the file type for hard copy versions of the graphics. Hard copy is formed for all the graphics that are displayed.

New \(\quad H[g](!\operatorname{HARDCOPY} g)\) replaces the G option when graphics are to be written to file but not displayed on the screen. The H may be followed by a format code e.g. H22 for .eps.

New
Q (! QUIET) is used when running under the control of and editor such as ASRemlWto suppress any POPUPs/ PAUSES from ASReml.

ASReml writes the graphics to files whose names are built up as
<basename \(>[<\) args \(\rangle]\) <type \(>[<\) pass \(\rangle][<\) section \(\rangle]\). \(<\) ext \(\rangle\) where square parentheses indicate elements that might be omitted, <basename> is the name portion of the .as file, <args> is any argument strings built into the output names by use of the ! RENAME qualifier, <type> indicates the contents of the figure (as given in the following table), <pass> is inserted when the job is repeated (!RENAME or !CYCLE) to ensure filenames are unique across repeats, <section> is inserted to distinquish files produced from different sections of data (for example from multisite spatial analysis) and \(<e x t>\) indicates the file graphics format.
\[
<\text { type }>\quad \text { file contents }
\]
\begin{tabular}{ll}
R- & marginal means of residuals from spatial analysis of a section \\
- & variogram of residuals from spatial analysis for a section \\
-s & residuals in field plan for a section \\
-H_- & histogram of residuals for a section \\
-RvE & residuals plotted against expected values \\
XYGi & figure produced by !X, !Y and !G qualifiers \\
PV_i & Predicted values plotted for PREDICT directive \(i\) \\
\hline \hline
\end{tabular}

The graphics file format is specified by following the G or H option by a number \(g\), or specifying the appropriate qualifier on the top job control line, as follows:
\begin{tabular}{rlll}
\(g\) & qualifier & description & \(<e x t>\) \\
\hline & & & \\
1 & !HPGL & HP-GL & pgl \\
2 & !PS & Postscript (default) & ps \\
6 & !BMP & BMP & bmp \\
10 & !WPM & Windows Print Manager & \\
11 & !WMF & Windows Meta File & wmf \\
12 & ! HPGL 2 & HP-GL2 & hgl \\
22 & !EPS & EncapsulatedPostScript & eps \\
\hline \hline
\end{tabular}

\section*{Job control command line options (C, F, O, R)}

C (!CONTINUE) indicates that the job is to continue iterating from the values in the .rsv file. This is equivalent to setting !CONTINUE on the datafile line, see Table 5.4 for details.

F (!FINAL) indicates that the job is to continue for one more iteration from the values in the .rsv file. This is useful when using predict, see Chapter 10.
New \(\quad 0\) (!ONERUN) is used with the R option to make ASReml perform a single analysis when the \(R\) option would otherwise attempt multiple analyses. The \(R\) option then builds some arguments into the output file name while other arguments are not. For example

ASReml -nor2 mabphen 2 TWT out(621) out (929)
results in one run with output files mabphen2_TWT.*.
\(\mathrm{R}[r]\) (!RENAME \([r]\)) is used in conjunction with at least \(r\) argument(s) and does two things: it modifies the output filename to include the first \(r\) arguments so the output is identified by these arguments, and, if there are more than \(r\) arguments, the job is rerun moving the extra arguments up to position \(r\) (unless ! ONERUN (0) is also set). If \(r\) is not specified, it is taken as 1 .

For example
ASReml -r2 job wwt gfw fd fat
is equivalent to running three jobs:
\[
\begin{aligned}
& \text { ASReml }-\mathrm{r} 2 \text { job wwt gfw } \rightarrow \text { jobwwt_gfw.asr } \\
& \text { ASReml -r2 job wwt fd } \rightarrow \text { jobwwt_fd.asr } \\
& \text { ASReml }-\mathrm{r} 2 \text { job wwt fat } \rightarrow \text { jobwwt_fat.asr }
\end{aligned}
\]

Yy (!YVAR \(y\)) overrides the value of response, the variate to be analysed (see Section 6.2) with the value \(y\), where \(y\) is the number of the data field containing the trait to be analysed. This facilitates analysis of several traits under the same model. The value of \(y\) is appended to the basename so that output files are not overwritten when the next trait is analysed.

\section*{Workspace command line options (S, W)}

The workspace requirements depend on problem size and may be quite large. An initial workspace allocation may be requested on the command line with the S or W options; if neither is specified, 32 Mbyte (4 million double precision words) is allocated.

New \(\quad W m\) (!WORKSPACE \(m\)) sets the initial size of the workspace in Mbytes. For example W1600 requests 1600 Mbytes of workspace, the maximum typically available under Windows. W2000 is the maximum available on 32bit Unix(Linux) systems. On 64bit systems, the argument, if less than 32 , is taken as Gbyte.

Alternatively, \(\mathrm{S} s\) can be used to set the initial workspace allocation. \(s\) is a digit. The workspace allocated is \(2^{s} \times 8 \mathrm{Mbyte}\); S 3 is \(64 \mathrm{Mb}, \mathrm{S} 4\) is \(128 \mathrm{Mb}, \mathrm{S} 5\) is 256 Mb , S 6 is \(512 \mathrm{Mb}, \mathrm{S} 7\) is \(1024 \mathrm{Mb}, \mathrm{S} 8\) is \(2048 \mathrm{Mb}, \mathrm{S} 9\) is 4096 Mb . This option was in Release 1.0; the more flexible option, \(\mathrm{W} m\), has been introduced in Release 2.0. The W option is ignored if the S option is also specified.

Otherwise, additional workspace may be requested with the \(\mathrm{S} s\) or Wm options or the !WORKSPACE \(m\) qualifier on the top job control line if not specified on the control line. If your system cannot provide the requested workspace, the request will be diminished until it can be satisfied. On multi-user systems, do not unnecessarily request the maximum or other users may complain.

Having started with an initial allocation, if ASReml realises more space is required as it is running, it will attempt to restart the job with increased workspace. If the system has already allocated all available memory the job will stop.

\section*{Examples}
\begin{tabular}{ll}
\hline ASReml code & action \\
\hline asreml -LW64 rat.as & \begin{tabular}{l}
increase workspace to 64 Mbyte, send screen output to \\
rat.asl and suppress interactive graphics
\end{tabular} \\
asreml -IL rat.as & \begin{tabular}{l}
send screen output to rat.asl but display interactive graph- \\
ics
\end{tabular} \\
asreml -N rat.as & \begin{tabular}{l}
allow screen output but suppress interactive graphics
\end{tabular} \\
asreml -ILW512 rat.as & \begin{tabular}{l}
increase workspace to 512 Mbyte, send screen output to
\end{tabular} \\
asreml -rs3 coop wwt ywt & \begin{tabular}{l}
runs coop.as twice writing results to coopwwt.as and \\
coopywt.as using \(64 M b\) workspace and substituting wwt and
\end{tabular} \\
ywt for \$1 in the two runs.
\end{tabular}

\subsection*{12.4 Advanced processing arguments}

\section*{Standard use of arguments}

Command line arguments are intended to facilitate the running of a sequence of jobs that require small changes to the command file between runs. The output file name is modified by the use of this feature if the -R option is specified. This use is demonstrated in the Coopworth example of Section 15.10, see page 297.

Command line arguments are strings listed on the command line after basename, the command file name, or specified on the top job control line after the ! ARGS qualifier. These strings are inserted into the command file at run time. When the input routine finds a \(\$ n\) in the command file it substitutes the \(n\)th argument (string). \(n\) may take the values \(1 \ldots 9\) to indicate up to 9 strings after the command file name. If the argument has 1 character, a trailing blank is attached to the character and inserted into the command file. If no argument exists, a zero is inserted. For example,
```

asreml rat.as alpha beta

```
tells ASReml to process the job in rat. as as if it read alpha wherever \(\$ 1\) appears in the command file, beta wherever \(\$ 2\) appears and 0 wherever \(\$ 3\) appears.

Table 12.2: The use of arguments in ASReml
\begin{tabular}{lll}
\hline in command file & on command line & becomes in ASReml run \\
\hline abc\$1def & no argument & abc0 def \\
abc\$1def & with argument X & abcX def \\
abc\$1def & with argument XY & abcXYdef \\
abc\$1def & with argument XYZ & with argument XX \\
abc\$1 def & with argument XXX & with argument XXX \\
abc\$1 def & & abcXXX \\
\begin{tabular}{ll}
abc \(\$ 1\) \\
\((\) multiple spaces \()\)
\end{tabular} & \\
\hline \hline
\end{tabular}

\section*{Prompting for input}

Another way to gain some interactive control of a job in the PC environment is to insert !?\{text\} in the .as file where you want to specify the rest of the line at run time. ASReml prompts with text and waits for a response which is used to compete the line. The !? qualifier may be used anywhere in the job and the line is modified from that point.

Warning Unfortunately the prompt may not appear on the top screen under some windows operating systems in which case it may not be obvious that ASReml is waiting for a keyboard response.

\section*{Paths and Loops}

ASReml is designed to analyse just one model per run. However, the analysis of a data set typically requires many runs, fitting different models to different traits. It is often convenient to have all these runs coded into a single .as file and control the details from the command line (or top job control line) using arguments. The highlevel qualifiers !CYCLE and DOPATH enable multiple analyses to be defined and run in one execution of ASReml.

Table 12.3: High level qualifiers
qualifier action \(\quad\)\begin{tabular}{l}
\hline
\end{tabular}
is a mechanism whereby ASReml can loop through a series of jobs. The !CYCLE qualifier must appear on its own line, starting in character 1 . em list is a series of values which are substituted into the job wherever the \(\$ I\) string appears. If ! JOIN is not specified, the current value from list is built into the output filenames writing the output to separate files. If !JOIN is specified, the outputs are written to a single file.
For example
!CYCLE 0.40 .50 .6 !JOIN
200 mat2 1.9 \$I ! GPF
would result in three runs and the results would be appended to a single file.
Warning: The ! CYCLE mechanism does not work in combination with the ! RENAME qualifier used with multiple command line arguments.

High level qualifiers
qualifier action
!DOPATH \(n\)

The qualifiers !DOPART and !PART have been extended in release 2.0 and !DOPATH and !PATH are thought to be more appropriate names. Both spellings can be used interchangably. !DOPATH allows several analyses to be coded and run sequentially without having to edit the .as file between runs. Which particular lines in the .as file are honoured is controlled by the argument \(n\) of the !DOPATH qualifier in conjunction with \(!\) PATH (or !PART) statements.

The argument \((n)\) is often given as \(\$ 1\) indicating that the actual path to use is specified as the first argument on the command line (see Section 12.4). See Sections 15.7 and 15.10 for examples. The default value of \(n\) is 1 .
!DOPATH \(n\) can be located anywhere in the job but if placed on the top job control line, it cannot have the form ! DOPATH \$1 unless the arguments are on the command line as the !DOPATH qualifier will be parsed before any job arguments on the same line are parsed.
!PATH pathlist The !PATH (or !PART) control statement may list multiple path numbers so that the following lines are honoured if any one of the listed path numbers is active. The ! PATH qualifier must appear at the beginning of its own line after the !DOPATH qualifier. A sequence of path numbers can be written using \(a: b\) notation. For example
mydata.asd !DOPATH 4
!PATH 24 6:10
One situation where this might be useful is where it is necessary to run simpler models to get reasonable starting values for more complex variance models. The more complex models are specified in later parts and the ! CONTINUE command is used to pick up the previous estimates.

\section*{13}

\section*{Description of output files}

\section*{Introduction}

An example
Key output files
The .asr file
The .sln file
The . yht file
Other ASReml output files
The .aov file
The .res file The .vrb file The .vvp file The .rsv file The .dpr file The .pvc file The .pvs file The .tab file

ASReml output objects and where to find them

\subsection*{13.1 Introduction}

With each ASReml run a number of output files are produced. ASReml generates the output files by appending various filename extensions to basename. A brief description of the filename extensions is presented in Table 13.1.

Table 13.1: Summary of ASReml output files
\begin{tabular}{ll}
\hline file & description \\
Key output files & contains a summary of the data and analysis results. \\
.asr & contains the report produced with the P option. \\
.pvc & \begin{tabular}{l}
contains predictions formed by the predict directive. \\
.pvs \\
contains information from using the pol (), spl () and fac ()
\end{tabular} \\
functions, the iteration sequence for the variance components \\
and some statistics derived from the residuals.
\end{tabular}

An ASReml run generates many files and the .sln and .yht files, in particular, are often quite large and could fill up your disk space. You should therefore regularly tidy your working directories, maybe just keeping the .as, .asr and .pvs files.

\subsection*{13.2 An example}

In this chapter the ASReml output files are discussed with reference to a two-dimensional separable autoregressive spatial analysis of the NIN field trial data, see model 3b on page 111 of Chapter 7 for details. The ASReml command file for this analysis is presented to the right. Recall that this model specifies a separable autoregressive correlation structure for residual or plot errors that is the direct product of an autoregressive correlation matrix of order 22 for rows and an autoregressive correlation matrix of order 11 for columns. In this case 0.5 is the starting correlation for both columns and rows.
```

NIN Alliance Trial }198
variety !A
id
raw
repl 4
nloc
yield
lat
long
row 22
column 11
nin89a.asd !skip 1 !DISPLAY 15
yield ~ mu variety !f mv
predict variety
120
row row AR1 0.5
column column AR1 0.5

```

\subsection*{13.3 Key output files}

The key ASReml output files are the .asr, .sln and .yht files.

\section*{The .asr file}

This file contains
- a general announcements box (outlined in asterisks) containing current messages,
- a summary of the data to validate the specification of the model,
- a summary of the fitting process to check convergence,
- a summary of the variance parameters:
- The Gamma column reports the actual parameter fitted,
- the Component column reports the gamma converted to a variance scale if appropriate,
- Comp/SE is the ratio of the component relative to the square root of the diagonal element of the inverse of the average information matrix Warning Comp/SE should not be used for formal testing,
- The \(\%\) shows the percentage change in the parameter at the last iteration,
- use the .pin file described Chapter 11 to calculate meaningful functions of the variance components,
- an analysis of variance (ANOVA) table (Section 6.12). The table contains the numerator degrees of freedom for the terms and 'incremental' F-statistics for approximate testing of effects. It may also contain denominator degrees of freedon, a 'conditional' F-statistic and a significance probability.
- estimated effects, their standard errors and \(t\) values for equations in the DENSE portion of the SSP matrix are reported if !BRIEF -1 is invoked; the T-prev column tests difference between successive coefficients in the same factor.

The following is a copy of nin89a.asr.

Finally we display a portion of Regression Screen output. The qualifier was !SCREEN 3 !SMX 3.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Source & Model & terms & Gamma & & Component & Comp/SE & \\
\hline idsize & 92 & 92 & 0.581102 & & 0.136683 & 3.31 & \\
\hline expt.idsize & 828 & 828 & 0.121231 & & \(0.285153 \mathrm{E}-01\) & 1.12 & 0 P \\
\hline Variance & 504 & 438 & 1.00000 & & 0.235214 & 12.70 & 0 P \\
\hline Analysis of Variance & & & NumDF D & DenDF_con & con F_inc & F_con M & P_con \\
\hline 113 mu & & & 1 & 72.46 & 65452.25562 & 223.68 . & <. 001 \\
\hline 2 expt & & & 6 & 37.5 & 5.27 & 0.64 A & 0.695 \\
\hline 4 type & & & 4 & 63.8 & 22.95 & 3.01 A & 0.024 \\
\hline 114 expt.type & & & 10 & 79.3 & 1.31 & 0.93 B & 0.508 \\
\hline \(23 \times 20\) & & & 1 & 55.1 & 4.33 & 2.37 B & 0.130 \\
\hline \(24 \times 21\) & & & 1 & 63.3 & 1.91 & 0.87 B & 0.355 \\
\hline \(25 \times 23\) & & & 1 & 68.3 & 23.93 & 0.11 B & 0.745 \\
\hline \(26 \times 39\) & & & 1 & 79.7 & 1.85 & 0.35 B & 0.556 \\
\hline \(27 \times 48\) & & & 1 & 69.9 & 1.58 & 2.08 B & 0.154 \\
\hline \(28 \times 59\) & & & 1 & 49.7 & 1.41 & 0.08 B & 0.779 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 29 x 60 & 1 & 59.6 & 1.46 & 0.42 & B & 0.518 \\
\hline \(30 \times 61\) & 1 & 64.0 & 1.11 & 0.04 & B & 0.838 \\
\hline \(31 \times 62\) & 1 & 61.8 & 2.18 & 0.09 & B & 0.770 \\
\hline \(32 \times 64\) & 1 & 55.6 & 31.48 & 4.50 & B & 0.038 \\
\hline \(33 \times 65\) & 1 & 57.8 & 4.72 & 6.12 & B & 0.016 \\
\hline \(34 \times 66\) & 1 & 58.5 & 1.13 & 0.03 & B & 0.872 \\
\hline \(35 \times 70\) & 1 & 59.3 & 1.71 & 1.40 & B & 0.242 \\
\hline \(36 \times 71\) & 1 & 64.4 & 0.08 & 0.01 & B & 0.929 \\
\hline \(37 \times 73\) & 1 & 59.0 & 1.79 & 3.01 & B & 0.088 \\
\hline \(38 \times 75\) & 1 & 59.9 & 0.04 & 0.26 & B & 0.613 \\
\hline 39 x 91 & 1 & 63.8 & 1.44 & 1.44 & B & 0.234 \\
\hline
\end{tabular}

Notice: The DenDF values are calculated ignoring fixed/boundary/singular variance parameters using empirical derivatives.
129 mv_estimates
9 idsize
115 expt.idsize
127 at(expt,6).type.idsize.meth
128 at(expt,7).type.idsize.meth

9 effects fitted
92 effects fitted (7 are zero)
828 effects fitted (672 are zero)
9 effects fitted (+ 2199 singular)
10 effects fitted (+ 2198 singular)
\begin{tabular}{|c|}
\hline \multicolumn{3}{|l|}{LINE REGRESSION} & \multicolumn{3}{|l|}{RESIDUAL} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { ADJUSTED } \\
& \text { R-SQUARED }
\end{aligned}
\]} & \multicolumn{17}{|l|}{FACTORS INCLUDED} \\
\hline NO & DF & SUMSQUARES & DF & MEANSQU & R-SQUARED & & 39 & 38 & 37 & 36 & 35 & 34 & 33 & 32 & 31 & 30 & 29 & 28 & 27 & 26 & 25 & 24 & 23 \\
\hline \multirow[t]{2}{*}{1} & 3 & \(0.1113 \mathrm{D}+02\) & 452 & 0.2460 & 0.09098 & 0.08495 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline & & & & & ***** & ***** & & & & & & & & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{2} & 3 & \(0.1180 \mathrm{D}+02\) & 452 & 0.2445 & 0.09648 & 0.09049 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline & & & & & ***** & ***** & & & & & & & & & & & & & & & & & \\
\hline 3 & 3 & \(0.1843 \mathrm{D}+01\) & 452 & 0.2666 & 0.01507 & 0.00853 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 4 & 3 & \(0.1095 \mathrm{D}+02\) & 452 & 0.2464 & 0.08957 & 0.08353 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline \multirow[t]{2}{*}{5} & 3 & \(0.1271 \mathrm{D}+02\) & 452 & 0.2425 & 0.10390 & 0.09795 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline & & & & & ***** & ***** & & & & & & & & & & & & & & & & & \\
\hline 6 & 3 & \(0.9291 \mathrm{D}+01\) & 452 & 0.2501 & 0.07594 & 0.06981 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 7 & 3 & \(0.9362 \mathrm{D}+01\) & 452 & 0.2499 & 0.07652 & 0.07039 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline \multirow[t]{2}{*}{8} & 3 & \(0.1357 \mathrm{D}+02\) & 452 & 0.2406 & 0.11091 & 0.10501 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & - & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline & & & & & ***** & ***** & & & & & & & & & & & & & & & & & \\
\hline 9 & 3 & \(0.9404 \mathrm{D}+01\) & 452 & 0.2498 & 0.07687 & 0.07074 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 10 & 3 & \(0.1266 \mathrm{D}+02\) & 452 & 0.2426 & 0.10350 & 0.09755 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 11 & 3 & \(0.1261 \mathrm{D}+02\) & 452 & 0.2427 & 0.10313 & 0.09717 & 1 & 0 & 0 & & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 12 & 3 & \(0.9672 \mathrm{D}+01\) & 452 & 0.2492 & 0.07906 & 0.07295 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & - & 0 & 0 & - & 0 & 0 & 0 & 0 \\
\hline 13 & 3 & \(0.9579 \mathrm{D}+01\) & 452 & 0.2494 & 0.07830 & 0.07218 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & - & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 14 & 3 & \(0.9540 \mathrm{D}+01\) & 452 & 0.2495 & 0.07797 & 0.07185 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 15 & 3 & 0.1089D+02 & 452 & 0.2465 & 0.08907 & 0.08302 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 16 & 3 & \(0.2917 \mathrm{D}+01\) & 452 & 0.2642 & 0.02384 & 0.01736 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & - & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 17 & 3 & \(0.2248 \mathrm{D}+01\) & 452 & 0.2657 & 0.01838 & 0.01187 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 18 & 3 & \(0.1111 \mathrm{D}+02\) & 452 & 0.2460 & 0.09088 & 0.08484 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 19 & 3 & \(0.1746 \mathrm{D}+01\) & 452 & 0.2668 & 0.01427 & 0.00773 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 20 & 3 & 0.1030D+02 & 452 & 0.2478 & 0.08423 & 0.07815 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 21 & 3 & 0.1279D+02 & 452 & 0.2423 & 0.10454 & 0.09860 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & - & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 22 & 3 & \(0.8086 \mathrm{D}+01\) & 452 & 0.2527 & 0.06609 & 0.05989 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 23 & 3 & \(0.7437 \mathrm{D}+01\) & 452 & 0.2542 & 0.06079 & 0.05456 & 0 & 0 & 1 & - & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 24 & 3 & 0.1071D+02 & 452 & 0.2469 & 0.08755 & 0.08149 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline \multirow[t]{2}{*}{25} & 3 & \(0.1370 \mathrm{D}+02\) & 452 & 0.240 & 0.11200 & 0.10611 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & - & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline & & & & & ** & ***** & & & & & & & & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{26} & 3 & \(0.1511 \mathrm{D}+02\) & 452 & 0.2372 & 0.12351 & 0.11770 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline & & & & & ***** & ***** & & & & & & & & & & & & & & & & & \\
\hline 27 & 3 & \(0.1353 D+02\) & 452 & 0.2407 & 0.11064 & 0.10473 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 680 & 3 & \(0.1057 \mathrm{D}+02\) & 452 & 0.2472 & 0.08641 & 0.08035 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\hline
\end{tabular}

\section*{The .sln file}

The .sln file contains estimates of the fixed and random effects with their standard errors in an array with four columns ordered as

\section*{factor_name level estimate standard_error}

Note that the error presented for the estimate of a random effect is the square root of the prediction error variance. In a genetic context for example where a relationship matrix \(\boldsymbol{A}\) is involved, the accuracy is \(\sqrt{ }\left(1-\frac{s_{i}^{2}}{\left(1+f_{i}\right) \sigma_{A}^{2}}\right)\) where \(s_{i}\) is the standard error reported with the BLUP \(\left(u_{i}\right)\) for the \(i\) th individual, \(f_{i}\) is the inbreeding coefficient reported when !DIAG qualifier is given on a pedigree file line, \(1+f_{i}\) is the diagonal element of \(\boldsymbol{A}\) and \(\sigma_{A}^{2}\) is the genetic variance. The .sln file can easily be read into a GENSTAT spreadsheet or an S-PLUS data frame. Below is a truncated copy of nin89a.sln. Note that
- the order of some terms may differ from the order in which those terms were specified in the model statement,
- the missing value estimates appear at the end of the file in this example.
variety estimates
intercept
missing value
estimates
\begin{tabular}{ll}
variety & LANCER \\
variety & BRULE \\
variety & REDLAND \\
variety & CODY \\
variety & ARAPAHOE \\
\(\vdots\) & \\
variety & NE87615 \\
variety & NE87619 \\
variety & NE87627
\end{tabular}
\begin{tabular}{rr}
0.000 & 0.000 \\
2.987 & 2.842 \\
4.707 & 2.978 \\
-0.3131 & 2.961 \\
2.954 & 2.727 \\
& \\
1.035 & 2.934 \\
5.939 & 2.850 \\
-4.376 & 2.998 \\
24.09 & 2.465 \\
21.91 & 6.729 \\
23.22 & 6.721 \\
22.52 & 6.708 \\
23.49 & 6.676 \\
22.26 & 6.698 \\
24.47 & 6.707 \\
20.14 & 6.697 \\
25.01 & 6.691 \\
24.29 & 6.676 \\
26.30 & 6.658 \\
24.99 & 6.590 \\
27.78 & 6.492
\end{tabular}

\section*{The . yht file}

The .yht file contains the predicted values of the data in the original order (this is not changed by supplying row/column order in spatial analyses), the residuals and the diagonal elements of the hat matrix. Figure 13.1 shows the residuals plotted against the fitted values (Yhat) and a line printer version of this figure is written to the .res file. Where an observation is missing, the residual, missing values predicted value and Hat value are also declared missing. The missing value estimates with standard errors are reported in the .sln file.

Figure 13.1 Residual versus Fitted values

This is the first 20 lines of nin89a. yht. Note that the values corresponding to the missing data (first 15 records) are all \(-0.1000 \mathrm{E}-36\) which is the internal value used for missing values.
\begin{tabular}{rccc}
Record & Yhat & Residual & Hat \\
1 & \(-0.10000 \mathrm{E}-36\) & \(-0.1000 \mathrm{E}-36\) & \(-0.1000 \mathrm{E}-36\) \\
2 & \(-0.10000 \mathrm{E}-36\) & \(-0.1000 \mathrm{E}-36\) & \(-0.1000 \mathrm{E}-36\) \\
3 & \(-0.10000 \mathrm{E}-36\) & \(-0.1000 \mathrm{E}-36\) & \(-0.1000 \mathrm{E}-36\) \\
4 & \(-0.10000 \mathrm{E}-36\) & \(-0.1000 \mathrm{E}-36\) & \(-0.1000 \mathrm{E}-36\) \\
5 & \(-0.10000 \mathrm{E}-36\) & \(-0.1000 \mathrm{E}-36\) & \(-0.1000 \mathrm{E}-36\) \\
6 & \(-0.10000 \mathrm{E}-36\) & \(-0.1000 \mathrm{E}-36\) & \(-0.1000 \mathrm{E}-36\) \\
7 & \(-0.10000 \mathrm{E}-36\) & \(-0.1000 \mathrm{E}-36\) & \(-0.1000 \mathrm{E}-36\) \\
8 & \(-0.10000 \mathrm{E}-36\) & \(-0.1000 \mathrm{E}-36\) & \(-0.1000 \mathrm{E}-36\) \\
9 & \(-0.10000 \mathrm{E}-36\) & \(-0.1000 \mathrm{E}-36\) & \(-0.1000 \mathrm{E}-36\) \\
10 & \(-0.10000 \mathrm{E}-36\) & \(-0.1000 \mathrm{E}-36\) & \(-0.1000 \mathrm{E}-36\)
\end{tabular}
```

-0.10000E-36 -0.1000E-36 -0.1000E-36
24.088 5.162 6.074
27.074 4.476 6.222
28.795 6.255 6.282
23.775 6.325 6.235
27.042 6.008 5.962
240 24.695 1.855 6.114
241 25.452 0.1475 6.158
242 22.465 4.435 6.604

```

\subsection*{13.4 Other ASReml output files}

\section*{The .aov file}

This file reports details of the ANOVA calculations, particularly as relating to the conditional F-statistics (not computed in this run). In the following table relating to the incremental F-statistic, the columns are
- model term
- columns in design matrix
- numerator degrees of freedom
- simple F-statistic
- F-statistic scaled by \(\lambda\)
- \(\lambda\) as defined in Kenward \& Roger.
- denominater degrees of freedom
\begin{tabular}{lrrrrrr}
mu & 1 & 1 & 331.8483 & 331.8483 & 1.0000 & 25.0082 \\
variety & 56 & 55 & 2.2259 & 2.2259 & 0.9995 & 110.8419
\end{tabular}

A more useful example is obtained by adding a linear nitrogen contrast to the oats example (Section 15.2).

The basic design is six replicates of three whole plots to which variety was randomised, and four subplots which received 4 rates of nitrogen. A ! CONTRAST qualifier defines the model term linNitr as the linear covariate representing ntrogen applied. Fitting this before the model term nitrogen means that this latter term represents lack of fit from a linear response.

The ! FCON qualifier requests conditional F statistics. As this is a small example, denominator degrees of freedom are reported by default. An extract from the .asr file is followed by the contents of the .aov file.
```

Split plot analysis - oat

```
Split plot analysis - oat
 blocks *
 blocks *
 nitrogen !A
 nitrogen !A
 subplots
 subplots
 variety !A
 variety !A
 wplots *
 wplots *
 yield
 yield
oats.asd !skip 2
oats.asd !skip 2
!CONTRAST linNitr nitrogen .6,
!CONTRAST linNitr nitrogen .6,
 0.4 0.2 0.0
 0.4 0.2 0.0
!FCON
!FCON
yield ~ mu variety linNitr,
yield ~ mu variety linNitr,
 nitrogen variety.linNitr,
 nitrogen variety.linNitr,
v ariety.nitrogen,
v ariety.nitrogen,
 !r blocks blocks.wplots
```

            !r blocks blocks.wplots
    ```


The analysis shows that there is a significant linear response to nitrogen level but the lack of fit term and the interactions with variety are not significant. In this example, the conditional F-statistic is the same as the incremental one because the contrast must appear before the lack-of-fit and the main effect before the interaction and otherwise it is a balanced analysis.

The first part of the .aov file, the FMAP table only appears if the job is run in DEBUG mode. There is a line for each model term showing the number
of non-singular effects in the terms before the current term is absorbed. For example, variety.nitrogen initially has 12 degrees of freedom (non-singular effects). mu takes 1 , variety then takes 2 , linNitr takes 1 , nitrogen takes 2 , variety.linNitr takes 2 and there are four degrees of freedom left. This information is used to make sure that the conditional F-statistic does not contradict marginality principles.

The next table indicates the details of the conditional F-statistic. The conditional F-statistic is based in the reduction in Sums of Squares from dropping the particular term (indicated by \(*\)) from the model also including the terms indicated by I, C and c.

The next two tables, based on incremental and conditional sums of squares report the model term, the number of effects in the term, the (numerator) degrees of freedom, the F-statistic, an adjusted F-statistic multiplied by a scaling constant reported in the next column and finally the computed denominator degrees of freedom. The scaling constant is discussed by Kenward and Roger (1997).
```

Table showing the reduction in the numerator degrees of freedom
for each term as higher terms are absorbed.
Model Term 6
1 mu 12 3 3 4 4
2 variety }1
3 LinNitr 9}3030
4 nitrogen 8 2 2
5 variety.LinNitr 6 2
6 variety.nitrogen 4
Marginality pattern for F-con calculation
-- Model terms --
Model Term DF 1
1 mu 1 * . C . C .
2 variety 2 I * C C . .
3 LinNitr 1 I I * . . .
4 nitrogen 2 I I I * . .
5 variety.LinNitr 2 I I I I * .
6 variety.nitrogen 4 I I I I I *
F-inc tests the additional variation explained when the term (*)
is added to a model consisting of the I terms.
F-con tests the additional variation explained when the term (*)
is added to a model consisting of the I and C/c terms.
The . terms are ignored for both F-inc and F-con tests.

```
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Source & Size & NumDF & F-value & Lambda*F & Lambda & DendF \\
\hline mu & 1 & 1 & 245.1409 & 245.1409 & 1.0000 & 5.0000 \\
\hline variety & 3 & 2 & 1.4853 & 1.4853 & 1.0000 & 10.0000 \\
\hline LinNitr & 1 & 1 & 110.3232 & 110.3232 & 1.0000 & 45.0000 \\
\hline nitrogen & 4 & 2 & 1.3669 & 1.3669 & 1.0000 & 45.0000 \\
\hline variety.LinNitr & 3 & 2 & 0.4753 & 0.4753 & 1.0000 & 45.0000 \\
\hline variety.nitrogen & 12 & 4 & 0.2166 & 0.2166 & 1.0000 & 45.0000 \\
\hline \multicolumn{7}{|l|}{Conditional F statistics - calculation of Denominator degrees of freedom} \\
\hline Source & Size & NumDF & F-value & Lambda*F & Lambda & DenDF \\
\hline mu & 1 & 1 & 327.5462 & 327.5462 & 1.0000 & 6.0475 \\
\hline variety & 3 & 2 & 1.4853 & 1.4853 & 1.0000 & 10.0000 \\
\hline LinNitr & 1 & 1 & 110.3232 & 110.3232 & 1.0000 & 45.0000 \\
\hline nitrogen & 4 & 2 & 1.3669 & 1.3669 & 1.0000 & 45.0000 \\
\hline variety.LinNitr & 3 & 2 & 0.4753 & 0.4753 & 1.0000 & 45.0000 \\
\hline variety.nitrogen & 12 & 4 & 0.2166 & 0.2166 & 1.0000 & 45.0000 \\
\hline
\end{tabular}

\section*{The .dpr file}

The .dpr file contains the data and residuals from the analysis in double precision binary form. The file is produced when the ! RES qualifier (Table 4.3) is invoked. The file could be renamed with filename extension. dbl and used for input to another run of ASReml. Alternatively, it could be used by another Fortran program or package. Factors will have level codes if they were coded using \(!\mathrm{A}\) or ! I. All the data from the run plus an extra column of residuals is in the file. Records omitted from the analysis are omitted from the file.

\section*{The .pvc file}

The .pvc file contains functions of the variance components produced by running a .pin file on the results of an ASReml run as described in Chapter 11. The .pin and .pvc files for a half-sib analysis of the Coopworth data are presented in Section 15.10.

\section*{The .pvs file}

The .pvs file contains the predicted values formed when a predict statement is included in the job. Below is an edited version of nin89a.pvs. See Section 3.6 for the .pvs file for the simple RCB analysis of the NIN data considered in that chapter.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|r|}{Ecode is E for Estimable, * for Not Estimable} \\
\hline & Warning: & mates & s ignored for predict \\
\hline & \multicolumn{3}{|l|}{Predicted values of yield} \\
\hline & variety & Predicted_Value & Standard_Error Ecode \\
\hline \multirow[t]{13}{*}{predicted variety means} & LANCER & 24.0894 & 2.4645 E \\
\hline & BRULE & 27.0728 & 2.4944 E \\
\hline & REDLAND & 28.7954 & 2.5064 E \\
\hline & CODY & 23.7728 & 2.4970 E \\
\hline & ARAPAHOE & 27.0431 & 2.4417 E \\
\hline & NE83404 & 25.7197 & 2.4424 E \\
\hline & NE83406 & 25.3797 & 2.5028 E \\
\hline & NE83407 & 24.3982 & 2.6882 E \\
\hline & CENTURA & 26.3532 & 2.4763 E \\
\hline & SCOUT66 & 29.1743 & 2.4361 E \\
\hline & NE87615 & 25.1238 & 2.4434 E \\
\hline & NE87619 & 30.0267 & 2.4666 E \\
\hline & NE87627 & 19.7126 & 2.4833 E \\
\hline SED summary & SED: Over & andard Error of & Difference 2.925 \\
\hline
\end{tabular}

\section*{The .res file}

The .res file contains miscellaneous supplementary information including
- a list of unique values of \(x\) formed by using the fac() model term,
- a list of unique \((x, y)\) combinations formed by using the \(\mathrm{fac}(x, y)\) model term,
- legandre polynomials produced by leg() model term,
- orthogonal polynomials produced by pol() model term,
- the design matrix formed for the spl() model term,
- predicted values of the curvature component of cubic smoothing splines,
- the empirical variance-covariance matrix based on the BLUPs when a \(\boldsymbol{\Sigma} \otimes \boldsymbol{I}\) or \(\boldsymbol{I} \otimes \boldsymbol{\Sigma}\) structure is used; this may be used to obtain starting values for another run of ASReml,
- a table showing the variance components for each iteration,
- some statistics derived from the residuals from two-dimensional data (multivariate, repeated measures or spatial)
- the residuals from a spatial analysis will have the units part added to them (defined as the combined residual) unless the data records were sorted (within ASReml) in which case the units and the correlated residuals are in different orders (data file order and field order respectively),
- the residuals are printed in the .yht file but the statistics in the .res file are calculated from the combined residual,
- the Covariance/Variance/Correlation (C/V/C) matrix calculated directly from the residuals; it contains the covariance below the diagonals, the variances on the diagonal and the correlations above the diagonal:
The 'FITTED' matrix is the same as is reported in the .asr file and if the Logl has converged is the one you would report; the 'BLUPS' matrix is clculated from the BLUPS and is provided so it can be used as starting values when a simple initial model has been used and you are wanting to attempt to fit a full unstructured matrix; the rescaled has the variance from the FITTED and the covariance from the BLUPS and might we more suitable as an initial matrix if the variances have been estimated. The FITTED and RESCALEd matrices should not be reported.
- relevant portions of the estimated variance matrix for each term for which an R structure or a G structure has been associated,
- a variogram and spatial correlations for spatial analysis; the spatial correlations are based on distance between data points (see Gilmour et al., 1997),
- the slope of the \(\log (a b s o l u t e ~ r e s i d u a l) ~ o n ~ l o g(p r e d i c t e d ~ v a l u e) ~ f o r ~ a s s e s s i n g ~ p o s-~\) sible mean-variance relationships and the location of large residuals. For example,

SLOPES FOR LOG(ABS(RES)) ON LOG(PV) for section 1
0.992 .014 .34
produced from a trivariate analysis reports the slopes. A slope of \(b\) suggests that \(y^{1-b}\) might have less mean variance relationship. If there is no mean variance relation, a slope of zero is expected. A slope of \(\frac{1}{2}\) suggests a SQRT transformation might resolve the dependence; a slope of 1 means a LOG transformation might be appropriate. So, for the 3 traits, \(\log \left(y_{1}\right), y_{2}^{-1}\) and \(y_{3}^{-3}\) are indicated. This diagnostic strategy works better when based on grouped data regressing \(\log\) (standard deviation) on \(\log (\) mean \()\).
Also,
STND RES 16 -2.35 6.585 .64
indicates that for the 16th data record, the residuals are \(-2.35,6.58\) and 5.64 times the respective standard deviations. The standard deviation used in this
test is calculated directly from the residuals rather than from the analysis. They are intended to flag the records with large residuals rather than to precisely quantify their relative size. They are not studentised residuals and are generally not relevant when the user has fitted heterogeneous variances.

This is nin89a.res.

Convergence sequence of variance parameters
\begin{tabular}{lccccccc}
Iteration & 1 & 2 & 3 & 4 & 5 & 6 \\
LogL & -401.827 & -400.780 & -399.807 & -399.353 & -399.326 & -399.324 & \\
Change \% & 59 & 80 & 83 & 21 & 5 & 1 & \\
Adjusted & 0 & 0 & 0 & 0 & 0 & 0 & \\
StepSz & 0.316 & 0.562 & 1.000 & 1.000 & 1.000 & 1.000 & \\
5 & 0.500000 & 0.538787 & 0.589519 & 0.639457 & 0.651397 & 0.654445 & 0.5 \\
6 & 0.500000 & 0.487564 & 0.469768 & 0.448895 & 0.440861 & 0.438406 & -0.6
\end{tabular}

SLOPES FOR LOG(ABS(RES)) on LOG(PV) for Section 1 0.15

Spatial diagnostic statistics of Residuals
Residual Plot and Autocorrelations
<LOo- +xXH> [se 0.077]
| ++xxx+X|
|--- - \(0++x+x+x>+X \mid\)
10 - -- + +++xxx++X++
|+ \(+++x^{-}+x x x+++1\)
| 0 -- ++ +- \(\mathrm{xx}+\mathrm{xHxx} \mid\)
\(\mid-+x x x+x X x+++x\) xX ++x|
|-++ \(0-+\mathrm{XxxXXx}-\mathrm{xXX}+++\mid\)
| 00 L<Oo --++x x+xXx+x+H|
|<<<<< OOO- xX+ -x ++--|
|<0<<LLLoo - -o-+-+ +|
|L<<<<0-OL-o -++x x+ +|
\(\begin{array}{llllllllllll}1 & 0.28 & 0.38 & 0.50 & 0.65 & 0.77 & 1.00 & 0.77 & 0.65 & 0.50 & 0.38 & 0.28\end{array}\)
\(\begin{array}{llllllllllll}2 & 0.17 & 0.27 & 0.39 & 0.51 & 0.56 & 0.64 & 0.56 & 0.50 & 0.40 & 0.32 & 0.26\end{array}\)
\(\begin{array}{llllllllllll}3 & 0.05 & 0.11 & 0.19 & 0.28 & 0.35 & 0.42 & 0.40 & 0.35 & 0.30 & 0.24 & 0.19\end{array}\)
Residuals [Percentage of sigma \(=6.979\)]
\begin{tabular}{rrrrrrrrrrrrrrrrrrrrrrrr}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 74 & 64 & 90 & 91 & 86 & 65 & 141 \\
-72 & -29 & -52 & -20 & -61 & 11 & -132 & 26 & 0 & 63 & 15 & 99 & 9 & 37 & 84 & 48 & 110 & 228 & 49 & 131 & -20 & 9 \\
-87 & 1 & -32 & -14 & -26 & -30 & -3 & 37 & -6 & 4 & 23 & 32 & 44 & 46 & 109 & 97 & 83 & 67 & 68 & 141 & 69 & 40 \\
44 & 11 & 0 & 3 & 6 & 0 & 21 & 41 & -15 & 51 & 25 & 32 & 120 & -33 & 10 & 58 & 117 & 113 & 109 & 63 & 57 & 25 \\
18 & 18 & -2 & -84 & -19 & -51 & -45 & 18 & 30 & 56 & -9 & -12 & 53 & -41 & 7 & 99 & 123 & 47 & 119 & 181 & 101 & 104 \\
-40 & 29 & 87 & 103 & 81 & 61 & 81 & 130 & 94 & 10 & 55 & 53 & 55 & 106 & 15 & 109 & 153 & 23 & 0 & 50 & 66 & 111 \\
-29 & 75 & 43 & -24 & -90 & -37 & -23 & 64 & 130 & 84 & 122 & 129 & 126 & 90 & -38 & 91 & 133 & 126 & -16 & 57 & 30 & 70 \\
-99 & -114 & -218 & -332 & -174 & -77 & -19 & -38 & -29 & 58 & 63 & 88 & 4 & 124 & 49 & 101 & 129 & 113 & 45 & 92 & 70 & 198 \\
-257 & -333 & -352 & -319 & -253 & -166 & -152 & -52 & -28 & 0 & 97 & 135 & 67 & 16 & -9 & -36 & 96 & 24 & 62 & 48 & -27 & -29 \\
-227 & -167 & -356 & -335 & -183 & -179 & -189 & -118 & -124 & 14 & -52 & 19 & -7 & -56 & -81 & -33 & 63 & -40 & 57 & -15 & 24 & 73 \\
-183 & -277 & -352 & -323 & -288 & -151 & -56 & -130 & -188 & -29 & -78 & 7 & 12 & -30 & 39 & 57 & 89 & -3 & 116 & 27 & 2 & 64
\end{tabular}

Figures 13.2 to 13.5 show the graphics derived from the residuals when the !DISPLAY 15 qualifier is specified and which are written to .eps files by running
```

ASReml -g22 nin89a.as

```

The graphs are a variogram of the residuals from the spatial analysis for site 1 (Figure 13.2), a plot of the residuals in field plan order (Figure 13.3), plots of the marginal means of the residuals (Figure 13.4) and a histogram of the residuals (Figure 13.5). The selection of which plots are displayed is controlled by the !DISPLAY qualifier (Table 5.4). By default, the variogram and field plan are displayed.

Figure 13.2 Variogram of residuals

The sample variogram is a plot of the semi-variances of differences of residuals at particular distances. The (0,0) position is zero because the difference is identically zero. ASReml displays the plot for distances \(0,1,2, \ldots, 8,9-10,11-14,15-20, \ldots\).

The plot of residuals in field plan order (Figure 13.3) contains in its top and right margins a diamond showing the minimum, mean and maximum residual for that row or column. Note that a gap identifies where the missing values occur.

The plot of marginal means of residuals shows residuals for each row/column as well as the trend in their means.

Figure 13.3 Plot of residuals in field plan order

\section*{The .rsv file}

The .rsv file contains the variance parameters from the most recent iteration of a model. The primary use of the .rsv file is to supply the values for the ! CONTINUE qualifier (see Table 5.4) and the C command line option (see Table 12.1). It contains sufficient information to match terms so that it can be used when the variance model has been changed. This is nin89a.rsv.
```

76 6 1690 120
0.000000 0.000000 0.000000 1.000000 0.6555046 0.4374830
RSTRUCTURE 1 2
VARIANCE 1 1 0 1.00000
STRUCTURE 22 1 1 0.655505

```

Residuals V Row alliance trial 1989. \(\begin{gathered}\text { Range: }\end{gathered}\)

Figure 13.4 Plot of the marginal means of the residuals

Figure 13.5 Histogram of residuals
```

STRUCTURE 11 1 1 0.437483

```

\section*{The .tab file}

The .tab file contains the simple variety means and cell frequencies. Below is an edited version of nin89.tab.
```

nin alliance trial 10 Sep 2002 04:20:15

```
Simple tabulation of yield
\begin{tabular}{lll}
variety & & \\
LANCER & 28.56 & 4 \\
BRULE & 26.07 & 4 \\
REDLAND & 30.50 & 4 \\
CODY & 21.21 & 4 \\
ARAPAHOE & 29.44 & 4 \\
NE83404 & 27.39 & 4 \\
NE83406 & 24.28 & 4 \\
NE83407 & 22.69 & 4 \\
CENTURA & 21.65 & 4 \\
SCOUT66 & 27.52 & 4 \\
COLT & 27.00 & 4 \\
& & \\
NE87615 & 25.69 & 4 \\
NE87619 & 31.26 & 4 \\
NE87627 & 23.23 & 4
\end{tabular}

\section*{The .vrb file}

The .vrb file contains the estimates of the effects together with their approximate prediction variance matrix corresponding to the dense portion. The file is formatted for reading back for post processing. The number of equations in the dense portion can be increased (to a maximum of 800) using the !DENSE option (Table 5.5) but not to include random effects. The matrix is lower triangular row-wise in the order that the parameters are printed in the .sln file. It can be thought of as a partitioned lower triangular matrix,
\[
\left[\begin{array}{ll}
\sigma^{2} & \cdot \\
\tilde{\boldsymbol{\beta}}_{D} & \sigma^{2} C^{D D}
\end{array}\right]
\]
where \(\tilde{\boldsymbol{\beta}}_{D}\) is the dense portion of \(\boldsymbol{\beta}\) and \(C^{D D}\) is the dense portion of \(C^{-1}\). This is the first 20 rows of nin89a.vrb. Note that the first element is the estimated error variance, that is, 48.6802 , see the variance component estimates in the .asr output.
\begin{tabular}{lllll}
\(0.486802 \mathrm{E}+02\) & \(0.000000 \mathrm{E}+00\) & \(0.000000 \mathrm{E}+00\) & \(0.298660 \mathrm{E}+01\) & \(0.000000 \mathrm{E}+00\) \\
\(0.807551 \mathrm{E}+01\) & \(0.470711 \mathrm{E}+01\) & \(0.000000 \mathrm{E}+00\) & \(0.456648 \mathrm{E}+01\) & \(0.886687 \mathrm{E}+01\) \\
\(-0.313123 \mathrm{E}+00\) & \(0.000000 \mathrm{E}+00\) & \(0.410031 \mathrm{E}+01\) & \(0.476546 \mathrm{E}+01\) & \(0.876708 \mathrm{E}+01\) \\
\(0.295404 \mathrm{E}+01\) & \(0.000000 \mathrm{E}+00\) & \(0.343331 \mathrm{E}+01\) & \(0.389620 \mathrm{E}+01\) & \(0.416124 \mathrm{E}+01\) \\
\(0.743616 \mathrm{E}+01\) & \(0.163302 \mathrm{E}+01\) & \(0.000000 \mathrm{E}+00\) & \(0.377176 \mathrm{E}+01\) & \(0.428109 \mathrm{E}+01\) \\
\(0.472519 \mathrm{E}+01\) & \(0.402696 \mathrm{E}+01\) & \(0.837281 \mathrm{E}+01\) & \(0.129013 \mathrm{E}+01\) & \(0.000000 \mathrm{E}+00\) \\
\(0.330076 \mathrm{E}+01\) & \(0.347471 \mathrm{E}+01\) & \(0.357605 \mathrm{E}+01\) & \(0.316915 \mathrm{E}+01\) & \(0.412130 \mathrm{E}+01\) \\
\(0.768275 \mathrm{E}+01\) & \(0.310018 \mathrm{E}+00\) & \(0.000000 \mathrm{E}+00\) & \(0.376637 \mathrm{E}+01\) & \(0.419780 \mathrm{E}+01\) \\
\(0.395693 \mathrm{E}+01\) & \(0.383429 \mathrm{E}+01\) & \(0.458492 \mathrm{E}+01\) & \(0.378585 \mathrm{E}+01\) & \(0.985202 \mathrm{E}+01\) \\
\(0.226478 \mathrm{E}+01\) & \(0.000000 \mathrm{E}+00\) & \(0.379286 \mathrm{E}+01\) & \(0.442457 \mathrm{E}+01\) & \(0.439485 \mathrm{E}+01\) \\
\(0.402503 \mathrm{E}+01\) & \(0.440539 \mathrm{E}+01\) & \(0.362391 \mathrm{E}+01\) & \(0.502071 \mathrm{E}+01\) & \(0.901191 \mathrm{E}+01\) \\
\(0.508553 \mathrm{E}+01\) & \(0.000000 \mathrm{E}+00\) & \(0.393626 \mathrm{E}+01\) & \(0.430512 \mathrm{E}+01\) & \(0.423753 \mathrm{E}+01\) \\
\(0.428826 \mathrm{E}+01\) & \(0.417864 \mathrm{E}+01\) & \(0.363341 \mathrm{E}+01\) & \(0.444776 \mathrm{E}+01\) & \(0.527289 \mathrm{E}+01\) \\
\(0.855241 \mathrm{E}+01\) & \(0.243687 \mathrm{E}+01\) & \(0.000000 \mathrm{E}+00\) & \(0.351386 \mathrm{E}+01\) & \(0.369983 \mathrm{E}+01\) \\
\(0.384055 \mathrm{E}+01\) & \(0.330171 \mathrm{E}+01\) & \(0.362019 \mathrm{E}+01\) & \(0.352370 \mathrm{E}+01\) & \(0.359516 \mathrm{E}+01\) \\
\(0.392097 \mathrm{E}+01\) & \(0.406762 \mathrm{E}+01\) & \(0.801579 \mathrm{E}+01\) & \(0.475935 \mathrm{E}+01\) & \(0.000000 \mathrm{E}+00\) \\
\(\ldots\) & & & &
\end{tabular}

The first 5 rows of the lower triangular matrix in this case are
\(\left[\begin{array}{rlllll}48.6802 & & & & & \\ 0 & 0 & & & & \\ 2.98660 & 0 & 8.07551 & & & \\ 4.70711 & 0 & 4.56648 & 8.86687 & & \\ -0.313123 & 0 & 4.10031 & 4.76546 & 8.76708 & \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots\end{array}\right]\)

\section*{The .vvp file}

The .vvp file contains the inverse of the average information matrix on the components scale. The file is formatted for reading back under the control of the .pin file described in Chapter 11. The matrix is lower triangular row-wise in the order the parameters are printed in the .asr file. This is nin89a.vvp with the parameter estimates in the order error variance, spatial row correlation, spatial column correlation.
```

Variance of Variance components 3
51.0852
0.217089 0.318058E-02
0.677748E-01 -0.201181E-02 0.649355E-02

```

\subsection*{13.5 ASReml output objects and where to find them}

Table 13.2 presents a list of objects produced with each ASReml run and where to find them in the output files.

Table 13.2: ASReml output objects and where to find them
\begin{tabular}{|c|c|c|}
\hline output object & found in & comment \\
\hline analysis of variance table & .asr file & the analysis of variance table contains F-statistics for each term in the fixed part of the model. These provide for an incremental or optionally a conditional test of significance (see Section 6.12). \\
\hline data summary & \begin{tabular}{l}
.asr file \\
.ass file
\end{tabular} & \begin{tabular}{l}
includes the number of records read and retained for analysis, the minimum, mean, maximum, number of zeros, number of missing values per data field, factor/variate field distinction. \\
An extended report of the data is written to the .ass file if the !SUM qualifier is specified. It includes cell counts for factors, histograms of variates and simple correlations among variates
\end{tabular} \\
\hline eigen analysis & \begin{tabular}{l}
.res file \\
.asl file
\end{tabular} & When ASReml reports a variance matrix to the .asr file, it also reports an eigen analysis of the matrix (eigen values and eigen vectors) to the .res file. \\
\hline elapsed time & \begin{tabular}{l}
.asr file \\
.asl file
\end{tabular} & this can be determined by comparing the start time with the finishing time. \\
\hline & & The execution times for parts of the Iteration process are written to the .asl file if the !DEBUG !LOGFILE command line qualifiers are invoked. \\
\hline fixed and random effects & . sln file & if ! BRIEF -1 is invoked, the effects that were included in the dense portion of the solution are also printed in the .asr file with their standard error, a t-statistic for testing that effect and a t-statistic for testing it against the preceding effect in that factor. \\
\hline heritability & .pvc file & placed in the .pvc file when postprocessing with a .pin file \\
\hline histogram of residuals & .res file & and graphics file \\
\hline intermediate results & .asl file & given if the -DL command line option is used. \\
\hline
\end{tabular}

Table of output objects and where to find them ASReml
output object \(\quad\) found in \(\quad\) comment
```

mean/variance rela- .res file
tionship

```
observed variance/ .res file covariance matrix formed from BLUPs and residuals
phenotypic variance .pvc file
plot of residuals against field position
possible outliers .res file
predicted (fitted) val- .yht file ues at the data points
predicted values .pvs file

REML log-likelihood .asr file
for non-spatial analyses ASReml prints the slope of the regression of \(\log (a b s(r e s i d u a l))\) against \(\log\) (predicted value). This regression is expected to be near zero if the variance is independent of the mean. A power of the mean data transformation might be indicated otherwise. The suggested power is approximately (1-b) where \(b\) is the slope. A slope of 1 suggests a log transformation. This is indicative only and should not be blindly applied. Weighted analysis or identifying the cause of the heterogeneity should also be considered. This statistic is not reliable in genetic animal models or when units is included in the linear model because then the predicted value includes some of the residual.
for an interaction fitted as random effects, when the first [outer] dimension is smaller than the inner dimension less 10, ASReml prints an observed variance matrix calculated from the BLUPs. The observed correlations are printed in the upper triangle. Since this matrix is not well scaled as an estimate of the underlying variance component matrix, a rescaled version is also printed, scaled according to the fitted variance parameters. The primary purpose for this output is to provide reasonable starting values for fitting more complex variance structure. The correlations may also be of interest. After a multivariate analysis, a similar matrix is also provided, calculated from the residuals.
placed in the .pvc file when postprocessing with a .pin file
these are residuals that are more than 3.5 standard deviations in magnitude
these in the are printed in the second column
given if a predict statement is supplied in the . as file.
the REML log-likelihood is given for each iteration. The REML log-likelihood should have converged

Table of output objects and where to find them ASReml
\begin{tabular}{lll}
\hline output object & found in & comment \\
residuals & \\
& \\
& & \begin{tabular}{l}
and in binary form in . dpr file; these are printed in \\
column 3. Furthermore, for multivariate analyses \\
the residuals will be in data order (traits within \\
records). However, in a univariate analysis with \\
missing values that are not fitted, there will be \\
fewer residuals than data records - there will be \\
no residual where the data was missing so this can \\
make it difficult to line up the values unless you
\end{tabular} \\
can manipulate them in another program (spread- \\
sheet).
\end{tabular}

\section*{Error messages}

Introduction
Common problems
Things to check in the .asr file
An example
Error messages
Warning messages

\subsection*{14.1 Introduction}

When ASReml finds an inconsistency it prints an error message to the screen (or the .asl file) and dumps the current information to the .asr file. Below is the screen output for a job that has been terminated due to an error. If a job has an error you should
- try and identify the problem from the error message in the Fault: line and the text of the Last line read: (this appears twice in the file to make it easier to find),
- check that all labels have been defined and are in the correct case,
- some errors arise from conflicting information; the error may point to something that appears valid but is inconsistent with something earlier in the file,
- reduce to a simpler model and gradually build up to the desired analysis - this should help to identify the exact location of the problem.

If the problem is not resolved from the above list, you may need to email Customer Support at support@asreml.co.uk. Please send the .as file, (a sample of) the data, the .asr file and the .asl file produced by running
asreml -dl basename.as
See Chapter 12 The -dl command line option invokes debug mode and sends all non-graphics screen output to the .asl file.

In this chapter we show some of the common typographical problems. Errors arising from attempts to fit an inappropriate model are often harder to resolve. Following is an example of output when the data file is not correctly named or is not present (ASReml tries to interpret the filename as a variable name when the file is not found).
```

ASReml 1.99a [01 Aug 2005] nin alliance trial
Build: c [26 Jul 2005] 32 bit
memory info 27 Jul 2005 15:41:25.267 64.00 Mbyte Windows ninerr1
Licensed to: Arthur Gilmour
tory Warning: FIELD DEFINITION lines should be INDENTED
There is no file called nine.asd
Invalid label for data field: 'nine.asd' contains a reserved character

```
working direc- Folder: C:\data\ex\manex
```

    or may get confused with a previous label or reserved word
    Fault 12 FORMAT error reading data structures
Last line read was: nine.asd !slip 1
Currently defined structures, COLS and LEVELS

| 1 variety | 1 | 56 | 0 | 0 | 0 | 0 |
| :--- | ---: | ---: | ---: | ---: | :--- | :--- |
| 2 id | 1 | 1 | 0 | 0 | 0 | 0 |
| 3 pid | 1 | 1 | 0 | 0 | 0 | 0 |
| 4 raw | 1 | 1 | 0 | 0 | 0 | 0 |
| 5 repl | 1 | 4 | 0 | 0 | 0 | 0 |
| 6 nloc | 1 | 1 | 0 | 0 | 0 | 0 |
| 7 yield | 1 | 1 | 0 | 0 | 0 | 0 |
| 8 lat | 1 | 1 | 0 | 0 | 0 | 0 |
| 9 long | 1 | 1 | 0 | 0 | 0 | 0 |
| 10 row | 1 | 22 | 0 | 0 | 0 | 0 |
| 11 column | 1 | 11 | 0 | 0 | 0 | 0 |
| 12 nine. asd | 0 | 0 | 0 | 0 | 0 | 0 |

ninerr1 C:\data\ex\manex
12 factors defined [max 500].
O variance parameters [max1500]. 2 special structures
last line read Last line read was: nine.asd !slip 1
12
fault message Finished: 27 Jul 2005 15:41:26.379 FORMAT error reading data structures

```

\subsection*{14.2 Common problems}

Common problems in coding ASReml are as follows:
- a variable name has been misspelt; variable names are case sensitive,
- a model term has been misspelt; model term functions and reserved words (mu, Trait, mv, units) are case sensitive,
- the data file name is misspelt or the wrong path has been given - enclose the pathname in quotes (') if it includes embedded blanks,
- a qualifier has been misspelt or is in the wrong place,
- there is an inconsistency between the variance header line and the structure definition lines presented,
- failure to use commas appropriately in model definition lines,
- there is an error in the R structure definition lines,
- there is an error in the G structure definition lines,
- there is a factor name error,
- there is a missing parameter,
- there are too many/few initial values,
- there is an error in the predict statement,
- model term mv not included in the model when there are missing values in the data and the model fitted assumes all data is present.

The most common problem in running ASReml is that a variable label is misspelt.

\subsection*{14.3 Things to check in the .asr file}

The information that ASReml dumps in the .ass file when an error is encountered is intended to give you some idea of the particular error:
- if there is no data summary ASReml has failed before or while reading the model line,
- if ASReml has completed one iteration the problem is probably associated with starting values of the variance parameters or the logic of the model rather than the syntax per se.

Part of the file nin89.asr presented in Chapter 13 is displayed below to indicate the lines of the .asr file that should be checked. You should check that
- sufficient workspace has been obtained,
- the records read/lines read/records used are correct,
- mean min max information is correct for each variable,
- the Loglikelihood has converged and the variance parameters are stable,
- ANOVA table has the expected degrees of freedom.
```

ASReml 1.63o [01 Jun 2005] NIN alliance trial }198
Build: j [01 Jul 2005] 128
workspace 14 Jul 2005 12:41:18.360 32.00 Mbyte Windows nin89a
Licensed to: Arthur Gilmour
working direc- Folder: C:\data\asr\UG2\manex
tory

```

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & Residual AR=AutoR & 110.43 & & 437483 & 5.43 & 0 U \\
\hline \multirow[t]{5}{*}{ANOVA} & Analysis of Variance & NumDF & DendF & F_inc & & Prob \\
\hline & 12 mu & 1 & 25.0 & 331.85 & & \(<.001\) \\
\hline & 1 variety & 55 & 110.8 & 2.22 & & <. 001 \\
\hline & \multicolumn{6}{|l|}{Notice: The DenDF values are calculated ignoring fixed/boundary/singular variance parameters using algebraic derivatives.} \\
\hline & 13 mv_estimates & & effect & fitted & & \\
\hline \multirow[t]{2}{*}{outliers?} & \multicolumn{6}{|l|}{6 possible outliers: in section 1 (see .res file)} \\
\hline & \multicolumn{6}{|l|}{Finished: 14 Jul 2005 12:41:26.862 LogL Converged} \\
\hline
\end{tabular}

\subsection*{14.4 An example}

See 2a in Sec- This is the command file for a simple RCB tion 7.3 analysis of the NIN variety trial data in the first part. However, this file contains eight common mistakes in coding ASReml. We also show two common mistakes associated with spatial analyses in the second part. The errors are highlighted and the numbers indicate the order in which they are detected. Each error is discussed with reference to the output written to the .asr file. A summary of the errors is as follows:
1. data file not found,
2. unrecognised qualifier,
3. incorrectly defined alphanumeric factor,
4. comma missing from first line of model,
5. misspelt variable label in linear model,
6. misspelt variable label in \(G\) structure header line,
7. wrong levels declared in G structure model line,
```

nin alliance trial
variety 56 \# 3.
id
pid
raw
repl }
nloc
yield
lat
long
row 22
column 11
nine.asd !slip 1 !dopart \$1

# 1. \& 2.

!part 1
yield~mu variety \# 4.
!r Repl \# 5.
001
Repl 1 \# 6.
2 0 IDV 0.1 \# 7.
!part 2
yield~mu variety \# 9.
12
11 row AR1 . 1 \#10.
22 col AR1 . 1
!part
predict voriety \# 8.

```
8. misspelt variable label in predict statement.
9. mv omitted from spatial model
10. wrong levels declared in \(R\) structure model
lines

\section*{1. Data file not found}

Running this job produces the . asr file in Section 14.1. The first problem is that ASReml cannot find the data file nine. asd as indicated in the error message above the Fault line. ASReml reports the last line read before
```

nin alliance trial
:
nine.asd !slip 1
yield ~ mu variety

```
the job was terminated, an error message
FORMAT error reading data structures
and other information obtained to that point. In this case the program only made it to the data file definition line in the command file. Since nine. asd commences in column 1, ASReml checks for a file of this name (in the working directory since no path is supplied). Since ASReml did not find the data file it tried to interpret the line as a variable definition but . is not permitted in a variable label. The problem is either that the filename is misspelt or a pathname is required. In this case the data file was given as nine. asd rather than nin. asd.

\section*{2. An unrecognised qualifier and 3. An incorrectly defined factor}

After supplying the correct pathname and re-running the job, ASReml produces the warning message

WARNING: Unrecognised qualifier at character 9 !slip 1
followed by the fault message
ERROR Reading the data.
The warning does not cause the job to terminate immediately but arises because !slip is not a recognised data file line qualifier; the correct qualifier is !skip. The job terminates when reading the header line of the nin.asd file which is alphabetic when it is expecting numeric values. The following output displays the error message produced.
```

ASReml 1.99a [01 Aug 2005] nin alliance trial
Build: c [26 Jul 2005] 32 bit
27 Jul 2005 15:41:38.987 64.00 Mbyte Windows ninerr2

```
error
hint
give away
```

```
```

Licensed to: Arthur Gilmour

```
```

Licensed to: Arthur Gilmour
Folder: C:\data\ex\manex
Folder: C:\data\ex\manex
QUALIFIERS: !SLIP 1
QUALIFIERS: !SLIP 1
Warning: Unrecognised qualifier at character 9 !SLIP 1
Warning: Unrecognised qualifier at character 9 !SLIP 1
QUALIFIER: !DOPART 1 is active
QUALIFIER: !DOPART 1 is active
Reading nin.asd FREE FORMAT skipping 0 lines
Reading nin.asd FREE FORMAT skipping 0 lines
Univariate analysis of yield
Univariate analysis of yield

| 1 variety | 1 | 56 | 56 | 0 | 0 | 0 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| 2 id | 1 | 1 | 1 | 0 | 1 | 0 |
| 3 pid | 1 | 1 | 1 | 0 | 2 | 0 |
| 4 raw | 1 | 1 | 1 | 0 | 3 | 0 |
| 5 repl | 1 | 4 | 4 | 0 | 4 | 0 |
| 6 nloc | 1 | 1 | 1 | 0 | 5 | 0 |
| 7 yield | 1 | 1 | 1 | 0 | 6 | 0 |
| 8 lat | 1 | 1 | 1 | 0 | 7 | 0 |
| 9 long | 1 | 1 | 1 | 0 | 8 | 0 |
| 10 row | 1 | 22 | 22 | 0 | 9 | 0 |
| 11 column | 1 | 11 | 11 | 0 | 10 | 0 |
| 12 mu | 0 | 1 | -8 | 0 | -1 | 0 |

```
```

..

```
..
Error at field 1 [variety] of record 1 [line 1]
Error at field 1 [variety] of record 1 [line 1]
Since this is the first data record, you may need to skip some header lines
Since this is the first data record, you may need to skip some header lines
(see !SKIP) or append the !A qualifier to the definition of factor variety
(see !SKIP) or append the !A qualifier to the definition of factor variety
Fault 0 Missing/faulty !SKIP or !A needed for variety
Fault 0 Missing/faulty !SKIP or !A needed for variety
 Last line read was: variety id pid raw rep nloc yield lat long row column
 Last line read was: variety id pid raw rep nloc yield lat long row column
 Currently defined structures, COLS and LEVELS
 Currently defined structures, COLS and LEVELS
ninerr2 nin.asd
 Model specification: TERM LEVELS GAMMAS
mu 0
variety 0
 12 factors defined [max 500].
 O variance parameters [max1500]. 2 special structures
 Last line read was: variety id pid raw rep nloc yield lat long row column
 12 0 0 0 8000
Finished: 27 Jul 2005 15:41:40.068 Missing/faulty !SKIP or !A needed for variety
```

Fixing the error by changing !slip to !skip however still produces the fault message

Missing/faulty !SKIP or ! A needed for variety.
The portion of output given below shows that ASReml has baulked at the name LANCER in the first field on the first data line. This alphabetic data field is not declared as alphabetic. The correct data field definition for variety is

```
variety !A
```

to indicate that variety is a character field.

```
Folder: C:\asr\ex\manex
QUALIFIERS: !SKIP 1
Reading nin89.asd FREE FORMAT skipping 1 lines
Univariate analysis of yield
Field 1 [LANCER] of record 1 [line 1] is not valid.
Since this is the first data record, you may need to skip some header lines
(see !SKIP) or append the !A qualifier to the definition of factor variety
Fault 0 Missing/faulty !SKIP or !A needed for variety
 Last line read was: LANCER 1 NA NA 1 4 NA 4.3 1.2 1 1
 :
ninerr3 variety id pid raw rep nloc yield lat
 Model specification: TERM LEVELS GAMMAS
mu 0 0.000
variety 0 0.000
 12 factors defined [max 500].
 O variance parameters [max 900]. 2 special structures
 Last line read was: LANCER 1 NA NA 1 4 NA 4.3 1.2 1 1
 12 0 0 0 8000
Finished: 28 Jul 2005 09:51:12.817 Missing/faulty !SKIP or !A needed for variety
```

hint

## 4. A missing comma and 5. A misspelt factor name in linear model

The model has been written over two lines but ASReml does not realise this because the first line does not end with a comma. The missing comma causes the fault

R header SECTIONS DIMNS GSTRUCT
as ASReml tries to interpret the second line of the model (see Last line read) as the variance header line. The .asr file is displayed

```
nin alliance trial
variety !A
:
repl 4
\vdots
nin89.asd !skip 1
yield ~ mu variety
!r Repl
\vdots
```

below. Note that the data has now been suc-
cessfully read as indicated by the data summary. You should always check the data summary to ensure that the correct number of records have been detected and the data values match the names appropriately.

```
ASReml 1.99a [01 Aug 2005] nin alliance trial
 Build: d [27 Jul 2005] 32 bit
28 Jul 2005 09:53:15.553 64.00 Mbyte Windows ninerr4
Licensed to: Arthur Gilmour
Folder: C:\data\ex\manex
 variety !A
QUALIFIERS: !SKIP 1
QUALIFIER: !DOPART 1 is active
Reading nin.asd FREE FORMAT skipping 1 lines
Univariate analysis of yield
Using 224 records of 242 read
\begin{tabular}{lrrrrrr}
Model term & Size \#miss \#zero & MinNon0 & Mean & MaxNon0 \\
1 variety & 56 & 0 & 0 & 1 & 28.5000 & 56 \\
2 id & & 0 & 0 & 1.000 & 28.50 & 56.00 \\
3 pid & & 0 & 0 & 1101. & 2628. & 4156. \\
4 raw & & 0 & 0 & 21.00 & 510.5 & 840.0 \\
5 repl & 4 & 0 & 0 & 1 & 2.5000 & 4 \\
6 nloc & & 0 & 0 & 4.000 & 4.000 & 4.000 \\
7 yield & & & 0 & 0 & 4.300 & 27.22 \\
8 lat & & 0 & 0 & 1.200 & 14.08 & 26.40 \\
9 long & 22 & 0 & 0 & 1 & 11.7321 & 22 \\
10 row & 11 & 0 & 0 & 1 & 6.3304 & 11 \\
11 column & 1 & & & & & 42.00 \\
12 mu & & & 0 & 1.050 & 25.53 &
\end{tabular}
Fault O R header SECTIONS DIMNS GSTRUCT
 Last line read was: !r Repl 0 0 0 0
ninerr4 variety id pid raw rep nloc yield lat
 Model specification: TERM LEVELS GAMMAS
variety 56
mu 1
 12 factors defined [max 500].
 O variance parameters [max1500]. 2 special structures
Final parameter values
```

```
Last line read was: !r Repl 0 0 0 0
 12 0 242 224 8000
Finished: 28 Jul 2005 09:53:16.775 R header SECTIONS DIMNS GSTRUCT
```

Inserting a comma on the end of the first line of the model to give

```
yield ~ mu variety,
!r Repl
```

solves that problem but produces the error message
Error reading model factor list
because Repl should have been spelt repl. Portion of the output is displayed. Since the model line is parsed before the data is read, this run failed before reading the data.

```
ASReml 1.99a [01 Aug 2005] nin alliance trial
 Build: d [27 Jul 2005] 32 bit
28 Jul 2005 10:06:48.042 64.00 Mbyte Windows ninerr5
Licensed to: Arthur Gilmour
Folder: C:\data\ex\manex
 variety !A
QUALIFIERS: !SKIP 1
QUALIFIER: !DOPART 1 is active
Reading nin.asd FREE FORMAT skipping 1 lines
Fault 0 Error reading model factor list
 Last line read was: Repl
 Currently defined structures, COLS and LEVELS
\begin{tabular}{lllllll}
1 variety & 1 & 2 & 2 & 0 & 0 & 0 \\
2 id & 1 & 1 & 1 & 0 & 1 & 0 \\
3 pid & 1 & 1 & 1 & 0 & 2 & 0 \\
4 raw & 1 & 1 & 1 & 0 & 3 & 0 \\
5 repl & 1 & 4 & 4 & 0 & 4 & 0 \\
6 nloc & 1 & 1 & 1 & 0 & 5 & 0
\end{tabular}
Finished: 28 Jul 2005 10:06:49.173 Error reading model factor list
```


## 6. Misspelt factor name and 7. Wrong levels declaration in the G structure definition lines

The next fault ASReml detects is
G structure header: Factor, order
indicating that there is something wrong in the $G$ structure definition lines. In this case the replicate term in the first G structure definition line has been spelt incorrectly. To correct this error replace Repl with repl.

```
nin alliance trial
\vdots
nin89.asd !skip 1
yield ~ mu variety
!r Repl
0 0 1
Repl 1
2 0 IDV 0.1
```



| Model specification: TERM LEVELS GAMMAS |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| variety | 56 |  |  |  |  |  |  |  |
| mu |  |  |  | 1 |  |  |  |  |
| repl |  |  |  | 4 | 0.100 |  |  |  |
| SECTIONS | 224 | 4 | 1 |  |  |  |  |  |
| TYPE | 0 | 0 | 0 |  |  |  |  |  |
| STRUCT | 224 | 0 | 0 | 0 | 0 | 0 |  | 0 |
| 12 factors defined [max 500]. |  |  |  |  |  |  |  |  |
| 4 variance parameters [max1500]. 2 special structures |  |  |  |  |  |  |  |  |
| Final parameter values |  |  |  |  | 0.10000 |  | 1.0000 |  |
| Last line read was: Repl 10000 |  |  |  |  |  |  |  |  |
| $12 \quad 1 \begin{array}{llll}1242 & 224 & 8000\end{array}$ |  |  |  |  |  |  |  |  |
| Finished | Jul | 15 | . 6 |  | ture head |  | Factor | r, |

Fixing the header line, we then get the error message

## Structure / Factor mismatch

This arose because repl has 4 levels but we have only declared 2 in the G structure model line. The G structure should read

```
repl 1
```

4 O IDV 0.1

The last lines of the output with this error are displayed below.



## 8. A misspelt factor name in the predict statement

The final error in the job is that a factor name is misspelt in the predict statement. This is a non-fatal error. The faulty statement is simply ignored by ASReml and no .pvs file is produced. To rectify this statement correct voriety to variety.

## 9. Forgetting mv in a spatial analysis

The first error message from running part 2 of the job is

```
R structures imply 0 + 242 records: only 224 exist
```

Checking the seventh line of the output below, we see that there were 242 records read but only 224 were retained for analysis. There are three reasons records are dropped.

1. the !FILTER qualifier has been specified,
2. the ! $D$ transformation qualifier has been specified and
3. there are missing values in the response variable and the user has not specified that they be estimated.
The last applies here so we must change the model line to read yield $\sim \mathrm{mu}$ variety mv.
```
Folder: C:\data\ex\manex
 variety !A
QUALIFIERS: !SKIP 1
QUALIFIER: !DOPART 2 is active
Reading nin.asd FREE FORMAT skipping 1 lines
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Using & 224 records of & 242 & read & & & & \\
\hline Model term & & Size & \#miss & \#zero & MinNon0 & Mean & MaxNon0 \\
\hline 1 variety & & 56 & 0 & 0 & 1 & 28.5000 & 56 \\
\hline
\end{tabular}
```

```
11 column
12 mu 1
 11 AR=AutoReg 0.1000
 22 AR=AutoReg 0.1000
Maybe you need to include 'mv' in the model
Fault 1 R structures imply 0 + 242 records: only 224 e
 Last line read was: 22 column AR1 0.1 0 0 0 0 0
ninerr9 variety id pid raw rep nloc yield lat
 Model specification: TERM LEVELS GAMMAS
variety 56
mu 1
SECTIONS 242 3
 STRUCT
 12 factors defined [max 500].
 5 variance parameters [max1500]. 2 special structures
Final parameter values 0.0000 -.10000E-360.10000
 0.10000
 Last line read was: 22 column AR1 0.1 0 0 0 0 0
 12 1 242 224 8000
Finished: 27 Jul 2005 15:42:10.192 R structures imply 0+242 records: only 224 exist
```


## 10. Field layout error in a spatial analysis

The final common error we highlight is the misspecification of the field layout. In this case we have 'accidently' switched the levels in rows and columns. However, ASReml can detect this error because we have also asked it to sort the data into field order. Had sorting not been requested, ASReml would not have been able to detect that the lines of the data file were not sorted into the appropriate field order and spatial analysis would be wrong.

```
Folder: C:\data\ex\manex
 variety !A
QUALIFIERS: !SKIP 1
QUALIFIER: !DOPART 2 is active
Reading nin.asd FREE FORMAT skipping 1 lines
Univariate analysis of yield
```



### 14.5 Information, Warning and Error messages

ASReml prints information, warning and error messages in the .asr file. The major information messages are in Table 14.2. A list of warning messages together with the likely meaning(s) is presented in Table 14.1. Error messages with their probable cause(s) is presented in Table 14.3.

Table 14.1: Some information messages and comments

| information message | comment |
| :--- | :--- |
| Logl converged | the REML log-likelihood changes between iter- <br> ations were less than 0.002 * iteration number <br> and variance parameter values appear stable. |
| BLUP run done | A full iteration has not been completed. See <br> discussion of ! BLUP. |
| JOB ABORTED by USER | See discussion of ABORTASR. NOW. |
| Logl converged, parameters not | the change in REML log-likelihood was small <br> converged <br> and convergence was assumed but the param- |
| eters are, in fact, still changing. |  |

Table 14.2: List of warning messages and likely meaning(s)

| warning message | likely meaning |
| :---: | :---: |
| Warning: e missing values generated by !^ transformation | data values should be positive. |
| Warning: $i$ singularities in AI matrix | usually means variance model is overparameterized. |
| Warning: $m$ variance structures were modified | the structures are probably at the boundary of the parameter space. |
| Warning: $n$ missing values were detected in the design | either use ! MVINCLUDE or delete the records. |
| Warning: $n$ negative weights | it is better to avoid negative weights unless you can check ASReml is doing the correct thing with them. |
| Warning: $r$ records were read from multiple lines | check you have the intended number of fields per line. |
| WARNING term has more levels [ \#\# ] than expected [ \#\# ]: | You have probably mis-specified the number of levels in the factor or omitted the !I qualifier (see Section 5.4 on data field definition syntax). ASReml corrects the number of levels. |
| Warning: term in the predict !IGNORE list | the term did not appear in the model. |
| Warning: term in the predict !USE list | the term did not appear in the model. |
| Warning: term is ignored for prediction | terms like units and mv cannot be included in prediction. |
| Warning: Check if you need the !RECODE qualifier | ! RECODE may be needed if the binary file was not prepared with ASReml. |
| Warning: Code B - fixed at a boundary (!GP) | suggest drop the term and refit the model. |
| Warning: Eigen analysis check of US matrix skipped | matrix is probably OK. |
| WARNING: Extra lines on the end of the input file ...: | this indicates that there are some lines on the end of the .as file that were not used. The first "extra" line is displayed. This is only a problem if you intended ASReml to read these lines. |
| Warning: Fewer levels found in term | ASReml increases to the correct value. |
| Warning: FIELD DEFINITION lines should be INDENTED | indent them to avert this message. |

List of warning messages and likely meaning(s)

| warning message | likely meaning |
| :---: | :---: |
| Warning: Fixed levels for factor | user nominated more levels than are permitted. |
| Warning: Initial gamma value is zero | constraint parameter is probably wrongly assigned. |
| Warning: Invalid argument. | fix the argument. |
| Warning: It is usual to include Trait | in multivariate analysis model. |
| Warning: LogL Converged; Parameters Not Converged | you may need more iterations. |
| Warning: LogL not converged | restart to do more iterations (see ! CONTINUE). |
| Warning: Missing cells in table | missing cells are normally not reported. |
| Warning: More levels found in term | consider setting levels correctly. |
| $\begin{aligned} & \text { Warning: PREDICT LINE IGNORED - } \\ & \text { TOO MANY } \end{aligned}$ | limit is 100 . |
| Warning: PREDICT statement is being ignored | because it contains errors. |
| Warning: Second occurrence of term dropped | if you really want to fit this term twice, create a copy with another name. |
| Warning: Spatial mapping information for side | gives details so you can check ASReml is doing what you intend. |
| Warning: Standard errors | that is, these standard errors are approximate. |
| Warning: SYNTAX CHANGE: text may be invalid | use the correct syntax. |
| Warning: The ! A qualifier ignored when reading BINARY data | the ! A fields will be treated as factors but are not encoded. |
| Warning: The !SPLINE qualifier has been redefined. | use correct syntax. |
| Warning: The ! X !Y !G qualifiers are ignored. There is no data to plot | revise the qualifier arguments. |
| Warning: The estimation was ABORTED | do not accept the estimates printed. |
| Warning: The labels for predictions are erroneous | the labels for predicted terms are probably out of kilter. Try a simpler predict statement. If the problem persists, send for help. |

List of warning messages and likely meaning(s)

| warning message | likely meaning |
| :---: | :---: |
| Warning: This US structure is not positive definite | check the initial values. |
| Warning: Unrecognised qualifier at character | the qualifier either is misspelt or is in the wrong place. |
| Warning: US matrix was not positive definite: MODIFIED | the initial values were modified. |
| Warning: User specified spline points | the points have been rescaled to suit the data values. |
| Warning: Variance parameters were modified by BENDing | ASReml may not have converged to the best estimate. |
| WARNING Likelihood decreased. Check gammas and singularities.: | a common reason is that some constraints have restricted the gammas. Add the ! GU qualifier to any factor definition whose gamma value is approaching zero (or the correlation is approaching (-)1. Alternatively, more singularities may have been detected. You should identify where the singularities are expected and modify the data so that they are omitted or consistently detected. One possibility is to centre and scale covariates involved in interactions so that their standard deviation is close to 1 . |

Table 14.3: Alphabetical list of error messages and probable cause(s)/remedies

| error message | probable cause/remedy |
| :--- | :--- |
| !PRINT: Cannot open output file | Check filename. |
| AINV/GIV matrix undefined or <br> wrong size <br> ASReml command file is EMPTY: | Check the size of the factor associated with <br> the AINV/GIV structure. |
| ASReml failed in ... | The job file should be in ASCII format. <br> Try running the job with increased workspace, <br> or using a simpler model. Otherwise send the <br> job to VSN (mailto:support@asreml.co.uk) <br> for investigation. |

Alphabetical list of error messages and probable cause(s)/remedies
error message
Continue from .rsv file
Convergence failed

Correlation structure is not
positive definite

Define structure for ...

Error in !CONTRAST label factor values

Error in !SUBSET label factor values

Error in R structure: model checks

Error opening file

Error reading something
probable cause/remedy

Try running without the ! CONTINUE qualifier.
the program did not proceed to convergence because the REML log-likelihood was fluctuating wildly. One possible reason is that some singular terms in the model are not being detected consistently. Otherwise, the updated G structures are not positive definite. There are some things to try:

- define US structures as positive definite by using ! GP,
- supply better starting values,
- fix parameters that you are confident of while getting better estimates for others (that is, fix variances when estimating covariances),
- fit a simpler model,
- reorganise the model to reduce covariance terms (for example, use CORUH instead of US.)

It is best to start with a positive definite correlation structure. Maybe use a structured correlation matrix.

A variance structure should be specified for this term.

The error could be in the variable(factor) name or in the number of values or the list of values.
The error could be in the variable(factor) name or in the number of values or the list of values.
the error model is not correctly specified.
the file did not exist or was of the wrong file type (binary $=$ unformatted, sequential).

There are several messages of this form where something is what ASReml is attempting to read. Either there is an error telling ASReml to read something when it does not need to, or there is an error in the way something is specified.

Alphabetical list of error messages and probable cause(s)/remedies

| error message | probable cause/remedy |
| :---: | :---: |
| Error reading the data: | the data file could not be interpreted: alphanumeric fields need the ! A qualifier. |
| Error reading the DATA FILENAME line | data file name may be wrong |
| Error reading the model factor list | the model specification line is in error: a variable is probably misnamed. |
| Error setting constraints (!VCC) on variance components | The !VCC constraints are specified last of all and require knowing the position of each parameter in the parameter vector. |
| Error setting dependent variable | the specified dependent variable name is not recognised. |
| Error setting MBF design matrix: ! MBF mbf ( $\mathrm{x}, \mathrm{k}$ ) filename | It is likely that the covariate values to not match the values supplied in the file. The values in the file should be in sorted order. |
| Error structures are wrong size: | the declared size of the error structures does not match the actual number of data records. |
| Error when reading knot point values | There is some problem on the !SPLINE line. It could be a wrong variable name or the wrong number of knot points. Knot points should be in increasing order. |
| Failed forming R/G scores...? | Try increasing workspace. |
| Failed ordering Level labels | The problem may be due to the use of the !SORT qualifier. |
| Failed to parse R/G structure line | May be an unrecognised factor/model-term name or variance structure name or wrong |
| Failed to read R/G structure line | count of initial values, possible on an earlier line. May be insufficient lines in the job. |
| Failed to process MYOWNGDG files | Check your MYOWNGDG program and the .gdg file. |
| ```Failed when sorting pedigree ... Failed when processing pedigree file ...``` | Maybe increase!WORKSPACE. |
| Failed while ordering equations. | Try increasing the workspace or simplifying the model. |

Alphabetical list of error messages and probable cause(s)/remedies

| error message | probable cause/remedy |
| :---: | :---: |
| FORMAT error reading factor Definitions: | Likely causes are <br> - bad syntax or invalid characters in the variable labels; variable labels must not include any of these symbols; !\|-+ (:\#\$ and ., <br> - the data file name is misspelt, <br> - there are too many variables declared or there is no valid value supplied with an arithmetic transformation option. |
| G-structure header: Factor order: | there is a problem reading G structure header line. The line must contain the name of a term in the linear model spelt exactly as it appears in the model |
| G structure: ORDER 0 MODEL GAMMAS: | a G structure line cannot be interpreted. |
| G structure size does not match | The size of the structure defined does not agree with the model term that it is associated with. |
| Gamma Constraint READ error | Check the syntax. |
| Getting Pedigree: | an error occurred processing the pedigree. The pedigree file must be ascii, free format with ANIMAL, SIRE and DAM as the first three fields. |
| GLM Bounds failure | ASReml failed to calculate the GLM working variables or weights. Check the data. |
| Increase declared levels for factor ... | Either the field has alphanumeric values but has not been declared using the ! A qualifier, or there is not enough space to hold the levels of the factor. To 'increase the levels', insert the expected number of levels after the ! A or ! I qualifier in the field definition. |
| Increase workspace | Use !WORKSPACE $s$ to increase the workspace available to ASReml. If the data set is not extremely big, check the data summary. |
| Insufficient data read from file | Maybe the response variable is all missing. |
| Insufficient points for : | there must be at least 3 distinct data values for a spline term |

Alphabetical list of error messages and probable cause(s)/remedies
error message

Insufficient workspace.
invalid analysis trait number

Invalid binary data Invalid Binomial Variable

Invalid definition of factor ...

## Invalid error structure for Multivariate Analysis

Invalid factor definition:
Invalid factor in model:

Invalid model factor ... :
Invalid SOURCE in $R$ structure definition

Invalid weight/filter column number:

Iteration aborted because of singularities

Iteration failed

Maximum number of special
structures exceeded

Maximum number of variance
parameters exceeded

If ASReml has not obtained the maximum available workspace, then use !WORKSPACE to increase it. The problem could be with the way the model is specified. Try fitting a simpler model or using a reduced data set to discover where the workspace is being used.

The response variable nominated by the ! YVAR command line qualifier is not in the data.
The data values are out of the expected range for binary/binomial data.
there is a problem with forming one of the generated factors. The most probable cause is that an interaction cannot be formed.
You must either use the US error structure or use the ! ASUV qualifier (and maybe include mv in the model).
a term in the model has no levels
a term in the model specification is not among the terms that have been defined. Check the spelling.
there is a problem with the named variable.
The second field in the $R$ structure line does not refer to a variate inthe data.
the weight and filter columns must be data fields. Check the data summary.

See the discussion of !AISINGULARITIES.

Maybe increase workspace or restructure/simplyfy the model.
special structures are weights, the Ainverse and GIV structures. The limit is 98 and so no more than 96 GIV structures can be defined.

The limit is 1500 . It may be possible to restructure the job so the limit is not exceeded, assuming that the acrual number of parameters to be estimated is less.

Alphabetical list of error messages and probable cause(s)/remedies
error message
Missing/faulty !SKIP or ! A needed
for ...
probable cause/remedy

Missing/faulty !SKIP or ! A needed for ...

Missing values in design variables/factors

## Missing Value Miscount forming

 designMissing values not allowed here:

Multiple trait mapping problem
Negative Sum of Squares:

NFACT out of range:
No .giv file for
No residual variation

Out of ...

Out of memory ...

ASReml failed to read the first data record Maybe it is a heading line which should be skipped by using the ! SKIP qualifier, or maybe the field is an alphanumeric field but has not been declared so with the ! A qualifier.

You need to identify which design terms contain missing values and decide whether delete the records containing the missing values in these variables or, if it is reasonable, to treat the missing values as zero by using !MVINCLUDE.

More missing values in the response were found than expected.
missing observations have been dropped so that multivariate structure is messed up.

Maybe a trait name is repeated.
This is typically caused by negative variance parameters; try changing the starting values or using the ! STEP option. If the problem occurs after several iterations it is likely that the variance components are very small. Try simplifying the model. In multivariate analyses it arises if the error variance is (becomes) negative definite. Try specifying ! GP on the structure line for the error variance.
too many terms are being defined.
Fix the argument to giv().
after fitting the model, the residual variation is essentially zero, that is, the model fully explains the data. If this is intended, use the !BLUP 1 qualifier so that you can see the estimates. Otherwise check that the dependent values are what you intend and then identify which variables explain it. Again, the ! BLUP 1 qualifier might help.
A program limit has been breached. Try simplifying the model.
use -WORKSPACE option to increase the workspace allocation. It may be possible to revise the models to increase sparsity.

Alphabetical list of error messages and probable cause(s)/remedies
error message probable cause/remedy

| Out of memory: forming design: | factors are probably not declared properly. Check the number of levels. Possibly use the -WORKSPACE command line option. |
| :---: | :---: |
| Overflow structure table: | occurs when space allocated for the structure table is exceeded. There is room for three structures for each model term for wich G structures are explicitly declared. The error might occur when ASReml needs to construct rows of the table for structured terms when the user has not formally declared the structures. Increasing $g$ on the variance header line for the number of $G$ structures (see page 117) will increase the space allocated for the table. You will need to add extra explicit declarations also. |
| Pedigree coding errors: | check the pedigree file and see any messages in the output. Check that identifiers and pedigrees are in chronological order. |
| Pedigree factor has wrong size: | the A-inverse factors are not the same size as the A-inverse. Delete the ainverse.bin file and rerun the job. |
| Pedigree too big: | program will need to be recompiled if file is correct. |
| POWER model setup error | Check the details for the distance based variance structure. |
| POWER Model: Unique points disagree with size | Check the distances specified for the distance based variance structure. |
| PROGRAM failed in | Try increasing workspace. Otherwise send problem to VSN. |
| PROGRAMMING error: | Try increasing the memory, simplifying the model and changing starting values for the gammas. If this fails send the problem to the VSN (mailto:support@asreml.co.uk) for investigation. |
| reading !SELF option | Check the argument. |

Alphabetical list of error messages and probable cause(s)/remedies

| error message | probable cause/remedy |
| :---: | :---: |
| Reading distances for POWER structure | POWER structures are the spatial variance models which require a list of distances. Distances should be in increasing order. If the distances are not obtained from variables, the 'SORT' field is zero and the distances are presented after all the $R$ and $G$ structures are defined. |
| Reading factor names: | something is wrong in the terms definitions. It could also be that the data file is misnamed. |
| reading Overdispersion factor | Check the argument. |
| READING OWN structures | There is probably a problem with the output from MYOWNGDG. Check the files, including the time stamps to check the .gdg file is being formed properly. |
| Reading the data: | if you read less data than you expect, there are two likely explanations. First, the data file has less fields than implied by the data structure definitions (you will probably read half the expected number). Second, there is an alphanumeric field where a numeric field is expected. |
| Reading Update step size: | check the ! STEP qualifier argument. |
| Residual Variance is Zero: | either all data is deleted or the model fully fits the data. |
| R header SECTIONS DIMNS GSTRUCT R structure header SITE DIM GSTRUCT | error with the variance header line. Often, some other error has meant that the wrong line is being interpreted as the variance header |
| Variance header: SEC DIM GSTRUCT | line. Commonly, the model is written over several lines but the incomplete lines do not all end with a comma. |
| R structure error ORDER SORTCOL MODEL GAMMAS: | an error reading the error model. |
| $R$ structures are larger than number of records | Maybe you need to include mv in the model to stop ASReml discarding records with missing values in the response variable. |
| REQUIRE ! ASUV qualifier for this R structure <br> REQUIRE I x E R structure | Without the ASUV qualifier, the multivariate error variance MUST be specified as US. |

Alphabetical list of error messages and probable cause(s)/remedies

| error message | probable cause/remedy |
| :--- | :--- |
| Scratch: |  |
|  | Apparently ASReml could not open a scratch <br> file to hold the transformed data. On unix, <br> check the temp directory //tmp for old large |
|  | scratch files. |
| Segmentation fault: | this is a Unix memory error. The first thing to <br> try is to increase the memory workspace us- |
| ing the !WORKSPACE (see Section 12.3 on mem- |  |

Alphabetical list of error messages and probable cause(s)/remedies
error message probable cause/remedy

```
Unable to invert R or G [US?]
```

```
matrix:
```

invert R or G [CORR?]
matrix:
Variance structure is not
positive definite
XFA model not permitted in $R$
structures
XFA may not be used as an R
structure
matrix:

Variance structure is not positive definite

XFA model not permitted in $R$ structures
structure
this message occurs when there is an error forming the inverse of a variance structure. The probable cause is a non positive definite (initial) variance structure (US, CHOL and ANTE models). It may also occur if an identity by unstructured (ID $\otimes \mathrm{US}$ ) error variance model is not specified in a multivariate analysis (including ! ASMV), see Chapter 8. If the failure is on the first iteration, the problem is with the starting values. If on a subsequent iteration, the updates have caused the problem. You could try reducing the updates by using the ! STEP qualifier. Otherwise, you could try fitting an alternative parameterisation. The CORGH model may be more stable than the US model.
generally refers to a problem setting up the mixed model equations. Most commonly, it is caused by a non positive definite matrix

Use better initial values or a structured variance matricx that is positive definite.

You may use FA or FACV. The R structure must be positive definite.

## Examples

Introduction
Split plot design - Oats
Unbalanced nested design - Rats
Source of variability in unbalanced data - Volts
Balanced repeated measures - Height
Spatial analysis of a field experiment - Barley Unreplicated early generation variety trial - Wheat

Paired Case-Control study - Rice
Standard analysis A multivariate approach Interpretation of results

## Balanced longitudinal data - Oranges

Initial analyses
Random coefficients and cubic smoothing splines
Multivariate animal genetics data - Sheep
Half-sib analysis
Animal model

### 15.1 Introduction

In this chapter we present the analysis of a variety of examples. The primary aim is to illustrate the capabilities of ASReml in the context of analysing real data sets. We also discuss the output produced by ASReml and indicate when problems may occur. Statistical concepts and issues are discussed as necessary but we stress that the analyses are illustrative, not prescriptive.

### 15.2 Split plot design - Oats

The first example involves the analysis of a split plot design originally presented by Yates (1935). The experiment was conducted to assess the effects on yield of three oat varieties (Golden Rain, Marvellous and Victory) with four levels of nitrogen application ( $0,0.2,0.4$ and $0.6 \mathrm{cwt} / \mathrm{acre}$ ). The field layout consisted of six blocks (labelled I, II, III, IV, V and VI) with three whole-plots per block, each split into four sub-plots. The three varieties were randomly allocated to the three whole-plots while the four levels of nitrogen application were randomly assigned to the four sub-plots within each whole-plot. The data is presented in Table 15.1.

Table 15.1 A split-plot field trial of oat varieties and nitrogen application

|  |  | nitrogen |  |  |  |
| :--- | :--- | ---: | ---: | ---: | ---: |
| block | variety | 0.0 cwt | 0.2 cwt | 0.4 cwt | 0.6 cwt |
|  | Victory | 111 | 130 | 157 | 174 |
| I | GoldenRain | 117 | 114 | 161 | 141 |
|  | Marvellous | 105 | 140 | 118 | 156 |
| II | Victory | 61 | 91 | 97 | 100 |
|  | GoldenRain | 70 | 108 | 126 | 149 |
|  | Marvelous | 96 | 124 | 121 | 144 |
| III | Victory | 68 | 64 | 112 | 86 |
|  | GoldenRain | 60 | 102 | 89 | 96 |
|  | Marvellous | 89 | 129 | 132 | 124 |
|  | Victory | 74 | 89 | 81 | 122 |
| IV | GoldenRain | 64 | 103 | 132 | 133 |
|  | Marvelous | 70 | 89 | 104 | 117 |
| V | Victory | 62 | 90 | 100 | 116 |
|  | GoldenRain | 80 | 82 | 94 | 126 |
|  | Marvellous | 63 | 70 | 109 | 99 |
| VI | Victory | 53 | 74 | 118 | 113 |
|  | GoldenRain | 89 | 82 | 86 | 104 |
|  | Marvellous | 97 | 99 | 119 | 121 |

A standard analysis of these data recognises the two basic elements inherent in the experiment. These two aspects are firstly the stratification of the experiment units, that is the blocks, whole-plots and sub-plots, and secondly, the treatment
structure that is superimposed on the experimental material. The latter is of prime interest, in the presence of stratification. Thus the aim of the analysis is to examine the importance of the treatment effects while accounting for the stratification and restricted randomisation of the treatments to the experimental units. The ASReml input file is presented below.

```
split plot example
 blocks 6 # Coded 1...6 in first data field of oats.asd
 nitrogen !A 4 # Coded alphabetically
 subplots * # Coded 1...4
 variety !A 3 # Coded alphabetically
 wplots * # Coded 1...3
 yield
oats.asd !SKIP 2
yield ~ mu variety nitrogen variety.nitrogen !r blocks blocks.wplots
predict nitrogen # Print table of predicted nitrogen means
predict variety
predict variety nitrogen !SED
```

The data fields were blocks, wplots, subplots, variety, nitrogen and yield. The first five variables are factors that describe the stratification or experiment design and treatments. The standard split plot analysis is achieved by fitting the model terms blocks and blocks.wplots as random effects. The blocks.wplots.subplots term is not listed in the model because this interaction corresponds to the experimental units and is automatically included as the residual term. The fixed effects include the main effects of both variety and nitrogen and their interaction. The tables of predicted means and associated standard errors of differences (SEDs) have been requested. These are reported in the .pvs file. Abbreviated output is shown below.


For simple variance component models such as the above, the default parameterisation for the variance component parameters is as the ratio to the residual variance. Thus ASReml prints the variance component ratio and variance component for each term in the random model in the columns labelled Gamma and Component respectively.

The analysis of variance (ANOVA) is printed below this summary. The usual decomposition has three strata, with treatment effects separating into different strata as a consequence of the balanced design and the allocation of variety to whole-plots. In this balanced case, it is straightforward to derive the ANOVA estimates of the stratum variances from the REML estimates of the variance components. That is

$$
\begin{array}{rrr}
\text { blocks stratum variance } & =12 \tilde{\sigma}_{b}^{2}+4 \tilde{\sigma}_{w}^{2}+\tilde{\sigma}^{2}=3175.06 \\
\text { blocks.wplots stratum variance } & = & 4 \tilde{\sigma}_{w}^{2}+\tilde{\sigma}^{2}=601.331 \\
\text { residual stratum variance } & = & \tilde{\sigma}^{2}=177.083
\end{array}
$$

where $\tilde{\sigma}_{b}^{2}$ is the blocks variance component, $\tilde{\sigma}_{w}^{2}$ is the blocks.wplots component and $\tilde{\sigma}^{2}$ is the residual variance.

The default output for testing fixed effects used by ASReml is a table of so-called incremental F-statistics. These F-statistics are described in Section 6.12. The statistics are simply the appropriate Wald test statistics divided by the number of estimable effects for that term. In this example there are four terms included in the summary. The overall mean (denoted by mu) is of no interest for these data. The tests are sequential, that is the effect of each term is assessed by the change in sums of squares achieved by adding the term to the current model, defined by the model which includes those terms appearing above the current term given the variance parameters. For example, the test of nitrogen is calculated from the change in sums of squares for the two models mu variety nitrogen and mu variety. No refitting occurs, that is the variance parameters are held constant at the REML estimates obtained from the currently specified fixed model.

The incremental Wald statistics have an asymptotic $\chi^{2}$ distribution, with degrees of freedom (df) given by the number of estimable effects (the number in the DF column). In this example, the incremental F-statistics are numerically the same as the ANOVA F-statistics, and ASReml has calculated the appropriate denominator df for testing fixed effects. This is a simple problem for balanced designs, such as the split plot design, but it is not straightforward to determine the relevant denominator df in unbalanced designs, such as the rat data set described in the next section.

Tables of predicted means are presented for the nitrogen, variety, and variety by nitrogen tables in the .pvs file. The qualifier !SED has been used on the third predict statement and so the matrix of SEDs for the variety by nitrogen table is printed. For the first two predictions, the average SED is calculated from the average variance of differences. Note also that the order of the predictions (e.g. 0.6 _cwt, 0.4 _cwt 0.2 _cwt $0 \_$cwt for nitrogen) is simply the order those treatment labels were discovered in the data file.


| Predicted values of yield |  |  |
| :--- | ---: | :--- |
| nitrogen | is averaged over fixed levels |  |
| blocks | is ignored in the prediction (exc |  |
| wplots | is ignored in the prediction (exc |  |
|  |  |  |
| variety | Predicted_Value Standard_Error E |  |
| Marvellous | 109.7917 | 7.7975 E |
| Victory | 97.6250 | 7.7975 E |
| Golden_rain | 104.5000 | 7.7975 E |


| Predicted values of yield |  |  |
| :--- | :--- | :--- |
| blocks | is ignored in the prediction (except where specificall |  |
| wplots | is ignored in the prediction (except where specificall |  |
|  |  |  |
| nitrogen | variety | Predicted_Value Standard_Error Ecode |
| $0.6 \_c w t ~$ | Marvellous | 126.8333 |


| 0.2_cwt | Marvellous | 108.5000 | 9.1070 E |
| :--- | :--- | ---: | :--- |
| 0.2_cwt | Victory | 89.6667 | 9.1070 E |
| 0.2_cwt | Golden_rain | 98.5000 | 9.1070 E |
| O_cwt | Marvellous | 86.6667 | 9.1070 E |
| O_cwt | Victory | 71.5000 | 9.1070 E |
| O_cwt | Golden_rain | 80.0000 | 9.1070 E |


| Predicted values with SED (PV) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 126.833 |  |  |  |  |
| 118.500 | 9.71503 |  |  |  |
| 124.833 | 9.71503 | 9.71503 |  |  |
| 117.167 | 7.68295 | 9.71503 | 9.71503 |  |
| 110.833 | 9.71503 | 7.68295 | 9.71503 | 9.71503 |
| 114.667 | 9.71503 | 9.71503 | 7.68295 | 9.71503 |
| 9.71503 |  |  |  |  |
| 108.500 | 7.68295 | 9.71503 | 9.71503 | 7.68295 |
| 9.71503 | 9.71503 |  |  |  |
| 89.6667 | 9.71503 | 7.68295 | 9.71503 | 9.71503 |
| 7.68295 | 9.71503 | 9.71503 |  |  |
| 98.5000 | 9.71503 | 9.71503 | 7.68295 | 9.71503 |
| 9.71503 | 7.68295 | 9.71503 | 9.71503 |  |
| 86.6667 | 7.68295 | 9.71503 | 9.71503 | 7.68295 |
| 9.71503 | 9.71503 | 7.68295 | 9.71503 | 9.71503 |
| 71.5000 | 9.71503 | 7.68295 | 9.71503 | 9.71503 |
| 7.68295 | 9.71503 | 9.71503 | 7.68295 | 9.71503 |
| 9.71503 |  |  |  |  |
| 80.0000 | 9.71503 | 9.71503 | 7.68295 | 9.71503 |
| 9.71503 | 7.68295 | 9.71503 | 9.71503 | 7.68295 |
| 9.71503 | 9.71503 |  |  |  |
| SED: Standa | r of Dif | : Min | Mean | 8 Max |

### 15.3 Unbalanced nested design - Rats

The second example we consider is a data set which illustrates some further aspects of testing fixed effects in linear mixed models. This example differs from the split plot example, as it is unbalanced and so more care is required in assessing the significance of fixed effects.

The experiment was reported by Dempster et al. (1984) and was designed to compare the effect of three doses of an experimental compound (control, low and high) on the maternal performance of rats. Thirty female rats (dams) were randomly split into three groups of 10 and each group randomly assigned to the three different doses. All pups in each litter were weighed. The litters differed in total size and in the numbers of males and females. Thus the additional covariate, littersize was included in the analysis. The differential effect of the compound
on male and female pups was also of interest. Three litters had to be dropped from experiment, which meant that one dose had only 7 dams. The analysis must account for the presence of between dam variation, but must also recognise the stratification of the experimental units (pups within litters) and that doses and littersize belong to the dam stratum. Table 15.2 presents an indicative AOV decomposition for this experiment.

Table 15.2 Rat data: AOV decomposition

| stratum | decomposition | type | df or ne |
| :--- | :--- | ---: | ---: |
| constant | 1 |  |  |
| dams |  |  | 1 |
|  | dose | F | 2 |
|  | littersize | F | 1 |
|  | dam | R | 27 |
| dams.pups | sex | F | 1 |
|  | dose.sex | F | 2 |
| error |  | R |  |

The dose and littersize effects are tested against the residual dam variation, while the remaining effects are tested against the residual within litter variation. The ASReml input to achieve this analysis is presented below.

```
Rats example
 dose 3 !A
 sex 2 !A
 littersize
 dam 27
 pup 18
 weight
rats.asd !DOPATH 1 # Change DOPATH argument to select each PATH
!PATH 1
weight ~ mu littersize dose sex dose.sex !r dam
!PATH 2
weight ~ mu out(66) littersize dose sex dose.sex !r dam
!PATH 3
weight ~ mu littersize dose sex !r dam
!PATH 4
weight ~ mu littersize dose sex
```

The input file contains an example of the use of the !DOPATH qualifier. Its argument specifies which part to execute. We will discuss the models in the two parts. It also includes the ! FCON qualifier to request conditional F-statistics. Abbreviated output from part 1 is presented below.



Notice: The DenDF values are calculated ignoring fixed/boundary/singular variance parameters using algebraic derivatives.
4 dam 27 effects fitted
SLOPES FOR LOG(ABS(RES)) on LOG(PV) for Section 1
2.27

3 possible outliers: see .res file

The iterative sequence has converged and the variance component parameter for dam hasn't changed for the last three iterations. The incremental Wald tests indicate that the interaction between dose and sex is not significant. The F_con column helps us to assess the significance of the other terms in the model. It confirms littersize is significant after the other terms, that dose is significant when adjusted for littersize and sex but ignoring dose.sex, and that sex is significant when adjusted for littersize and dose but ignoring dose.sex. These tests respect marginality to the dose.sex interaction.

We also note the comment 3 possible outliers: see .res file. Checking the .res file, we discover unit 66 has a standardised residual of -8.80 (see Figure 15.1). The weight of this female rat, within litter 9 is only 3.68 , compared to weights of 7.26 and 6.58 for two other female sibling pups. This weight appears erroneous, but without knowledge of the actual experiment we retain the observation in the following. However, part 2 shows one way of 'dropping' unit 66 by fitting an effect for it with out (66).


Figure 15.1 Residual plot for the rat data

We refit the model without the dose.sex term. Note that the variance parameters are re-estimated, though there is little change from the previous analysis.

| Source | Model | terms | Gamma |  | Component | Comp/SE | \% C |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| dam | 27 | 27 | 0.595157 |  | $0.979179 \mathrm{E}-01$ | 12.93 | 0 P |  |
| Variance | 322 | 317 | 1.00000 |  | 0.164524 | 12.13 | 0 P |  |
| Analysis of | Varian |  |  | NumDF | DenDF_con | F_inc | F_con | M P_con |
| 7 mu |  |  |  | 1 | 32.08 | 8981.48 | 1093.05 | <. 001 |
| 3 littersi | $z e$ |  |  | 1 | 31.4 | 27.85 | 46.43 | $\mathrm{A}<.001$ |
| 1 dose |  |  |  | 2 | 24.0 | 12.05 | 11.42 | $\mathrm{A}<.001$ |
| 2 sex |  |  |  | 1 | 301.7 | 58.27 | 58.27 | A <. 001 |

Part 4 shows what happens if we (wrongly) drop dam from this model. Even if a random term is not 'significant', it should not be dropped from the model if it represents a strata of the design as in this case.


### 15.4 Source of variability in unbalanced data - Volts

In this example we illustrate an analysis of unbalanced data in which the main aim is to determine the sources of variation rather than assess the significance of imposed treatments. The data are taken from Cox and Snell (1981) and involve an experiment to examine the variability in the production of car voltage regulators. Standard production of regulators involves two steps. Regulators are taken from the production line to a setting station and adjusted to operate within a specified voltage range. From the setting station the regulator is then passed to a testing station where it is tested and returned if outside the required range.

The voltage of 64 regulators was set at 10 setting stations (setstat); between 4 and 8 regulators were set at each station. The regulators were each tested at four testing stations (teststat). The ASReml input file is presented below.

```
Voltage data
 teststat 4 # 4 testing stations tested each regulator
 setstat !A # 10 setting stations each set 4-8 regulators
 regulatr 8 # regulators numbered within setting stations
 voltage
voltage.asd !skip 1
voltage ~ mu !r setstat setstat.regulatr teststat setstat.teststat
0 0
```

The factor regulatr numbers the regulators within each setting station. Thus the term setstat.regulatr allows for differential effects of each regulator, while the other terms examine the effects of the setting and testing stations and possible interaction. The abbreviated output is given below

| $\log L=188.604$ | $S 2=0.67074 \mathrm{E}-01$ | 255 df |
| :--- | :--- | :--- |
| $\log L=199.530$ | $\mathrm{~S} 2=0.59303 \mathrm{E}-01$ | 255 df |


| LogL= 203.007 | S2 $=0$ | . 52814 E | -01 255 df |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LogL= 203.240 | S2 $=0$ | . 51278E | -01 255 df |  |  |  |
| LogL= 203.242 |  | . 51141 E | -01 255 df |  |  |  |
| LogL= 203.242 | $\mathrm{S} 2=$ | . 51140 E | -01 255 df |  |  |  |
| Source | Model | terms | Gamma | Component | Comp/SE | \% C |
| setstat | 10 | 10 | 0.233418 | $0.119371 \mathrm{E}-01$ | 1.35 | P |
| setstat.regulatr | 80 | 64 | 0.601817 | $0.307771 \mathrm{E}-01$ | 3.64 | P |
| teststat | 4 | 4 | 0.642752E-01 | $0.328706 \mathrm{E}-02$ | 20.98 | 0 P |
| setstat.teststat | 40 | 40 | $0.100000 \mathrm{E}-08$ | $0.511404 \mathrm{E}-10$ | 0.00 |  |
| Variance | 256 | 255 | 1.00000 | $0.511404 \mathrm{E}-01$ | 19.72 | 0 P |
| Warning: Code B | fixed | at a b | undary (!GP) | F - fix | xed by us |  |
| ? | liabl | to ch | ange from $P$ | B P - pos | sitive de | nite |
|  | Const | rained | by user (!VCC) | U - unb | ounded |  |
|  |  | r In | on |  |  |  |

The convergence criteria has been satisfied after six iterations. A warning message in printed below the summary of the variance components because the variance component for the setstat.teststat term has been fixed near the boundary. The default constraint for variance components (! GP) is to ensure that the REML estimate remains positive. Under this constraint, if an update for any variance component results in a negative value then ASReml sets that variance component to a small positive value. If this occurs in subsequent iterations the parameter is fixed to a small positive value and the code B replaces P in the C column of the summary table. The default constraint can be overridden using the ! GU qualifier, but it is not generally recommended for standard analyses.

Figure 15.2 presents the residual plot which indicates two unusual data values. These values are successive observations, namely observation 210 and 211, being testing stations 2 and 3 for setting station $9(J)$, regulator 2 . These observations will not be dropped from the following analyses for consistency with other analyses conducted by Cox and Snell (1981) and in the GENSTAT manual.

The REML log-likelihood from the model without the setstat.teststat term was 203.242, the same as the REML log-likelihood for the previous model. Table 15.3 presents a summary of the REML log-likelihood ratio for the remaining terms in the model. The summary of the ASReml output for the current model is given below. The column labelled Comp/SE is printed by ASReml to give a guide as to the significance of the variance component for each term in the model. The statistic is simply the REML estimate of the variance component divided by the square root of the diagonal element (for each component) of the inverse of the average information matrix. The diagonal elements of the expected (not the average) information matrix are the asymptotic variances of the REML estimates
ltage example 5-3-6 from the GENSTAT REML manual Residuals vs Fitted valu Residuals (Y) $-1.08: 1.45$ Fitted values (X) 15.56: 16.81

Figure 15.2 Residual plot for the voltage data
of the variance parameters. These Comp/SE statistics cannot be used to test the null hypothesis that the variance component is zero. If we had used this crude measure then the conclusions would have been inconsistent with the conclusions obtained from the REML log-likelihood ratio (see Table 15.3).

| Source | Model | terms | Gamma | Component | Comp/SE | $\%$ | C |
| :--- | ---: | ---: | :--- | :---: | :---: | :---: | :---: | :---: |
| setstat | 10 | 10 | 0.233417 | $0.119370 \mathrm{E}-01$ | 1.35 | 0 | P |
| setstat.regulatr | 80 | 64 | 0.601817 | $0.307771 \mathrm{E}-01$ | 3.64 | 0 | P |
| teststat | 4 | 4 | $0.642752 \mathrm{E}-01$ | $0.328705 \mathrm{E}-02$ | 0.98 | 0 | P |
| Variance | 256 | 255 | 1.00000 | $0.511402 \mathrm{E}-01$ | 9.72 | 0 | P |

Table 15.3: REML log-likelihood ratio for the variance components in the voltage data

| terms | REML <br> log-likelihood | $-2 \times$ <br> difference | P-value |
| :--- | ---: | ---: | ---: |
|  |  |  |  |
| - setstat | 200.31 | 5.864 | .0077 |
| - setstat.regulatr | 184.15 | 38.19 | .0000 |
| - teststat | 199.71 | 7.064 | .0039 |

### 15.5 Balanced repeated measures - Height

The data for this example is taken from the GENSTAT manual. It consists of a total of 5 measurements of height ( cm ) taken on 14 plants. The 14 plants were either diseased or healthy and were arranged in a glasshouse in a completely random design. The heights were measured $1,3,5,7$ and 10 weeks after the plants were placed in the glasshouse. There were 7 plants in each treatment. The data are depicted in Figure 15.3 obtained by qualifier line
! Y y1 !G tmt ! JOIN
in the following multivariate ASReml job.


Figure 15.3 Trellis plot of the height for each of 14 plants
In the following we illustrate how various repeated measures analyses can be conducted in ASReml. For these analyses it is convenient to arrange the data in a multivariate form, with 7 fields representing the plant number, treatment identification and the 5 heights. The ASReml input file, up to the specification of the $R$ structure is

```
This is plant data multivariate
 tmt !A # Diseased Healthy
 plant 14
 y1 y3 y5 y7 y10
grass.asd !skip 1 !ASUV
```

The focus is modelling of the error variance for the data. Specifically we fit the multivariate regression model given by

$$
\begin{equation*}
\boldsymbol{Y}=\boldsymbol{D} \boldsymbol{T}+\boldsymbol{E} \tag{15.1}
\end{equation*}
$$

where $\boldsymbol{Y}^{14 \times 5}$ is the matrix of heights, $\boldsymbol{D}^{14 \times 2}$ is the design matrix, $\boldsymbol{T}^{2 \times 5}$ is the matrix of fixed effects and $\boldsymbol{E}^{14 \times 5}$ is the matrix of errors. The heights taken on the same plants will be correlated and so we assume that

$$
\begin{equation*}
\operatorname{var}(\operatorname{vec}(\boldsymbol{E}))=\boldsymbol{I}_{14} \otimes \boldsymbol{\Sigma} \tag{15.2}
\end{equation*}
$$

where $\boldsymbol{\Sigma}^{5 \times 5}$ is a symmetric positive definite matrix.

The variance models used for $\boldsymbol{\Sigma}$ are given in Table 15.4. These represent some commonly used models for the analysis of repeated measures data (see Wolfinger, 1986). The variance models are fitted by changing the last four lines of the input file. The sequence of commands for the first model fitted is

```
y1 y3 y5 y7 y10 ~ Trait tmt Tr.tmt !r units
120
14
Trait
```

Table 15.4 Summary of variance models fitted to the plant data

|  | number of <br> parameters | REML <br> log-likelihood | BIC |
| :--- | ---: | ---: | ---: |
|  |  |  |  |
| Uniform | 2 | -196.88 | 401.95 |
| Power | 2 | -182.98 | 374.15 |
| Heterogeneous Power | 6 | -171.50 | 367.57 |
| Antedependence (order 1) | 9 | -160.37 | 357.51 |
| Unstructured | 15 | -158.04 | 377.50 |

The split plot in time model can be fitted in two ways, either by fitting a units term plus an independent residual as above, or by specifying a CORU variance model for the $R$-structure as follows

```
y1 y3 y5 y7 y10 ~ Trait tmt Tr.tmt
120
14
Trait 0 CORU . }
```

The two forms for $\Sigma$ are given by

$$
\begin{array}{ll}
\boldsymbol{\Sigma}=\sigma_{1}^{2} \boldsymbol{J}+\sigma_{2}^{2} \boldsymbol{I}, & \text { units } \\
\boldsymbol{\Sigma}=\sigma_{e}^{2} \boldsymbol{I}+\sigma_{e}^{2} \rho(\boldsymbol{J}-\boldsymbol{I}), & \text { CORU } \tag{15.3}
\end{array}
$$

It follows that

$$
\begin{align*}
\sigma_{e}^{2} & =\sigma_{1}^{2}+\sigma_{2}^{2} \\
\rho & =\frac{\sigma_{1}^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}} \tag{15.4}
\end{align*}
$$

Portions of the two outputs are given below. The REML log-likelihoods for the two models are the same and it is easy to verify that the REML estimates of the variance parameters satisfy $(15.4)$, viz. $\sigma_{e}^{2}=286.310 \approx 159.858+126.528=$ $286.386 ; 159.858 / 286.386=0.558191$.
\#
\# !r units
\#

| $\operatorname{LogL=-204.593}$ | S2= | 224.61 |  | 60 d |  | 0.1000 | 1.000 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LogL=-201. 233 | S2= | 186.52 |  | 60 d | df | 0.2339 | 1.000 |  |
| LogL=-198.453 | S2= | 155.09 |  | 60 d | df | 0.4870 | 1.000 |  |
| LogL=-197.041 | S2= | 133.85 |  | 60 d | df | 0.9339 | 1.000 |  |
| LogL=-196.881 | S2= | 127.56 |  | 60 d | df | 1.204 | 1.000 |  |
| LogL=-196.877 | S2= | 126.53 |  | 60 d | df | 1.261 | 1.000 |  |
| Final parameter | values |  |  |  |  | 1.2634 | 1.0000 |  |
| Source | Model | terms | Gamma |  |  | mponent | Comp/SE | \% C |
| units | 14 | 14 | 1.26342 |  |  | 159.858 | 2.11 | 0 P |
| Variance | 70 | 60 | 1.00000 |  |  | 126.528 | 4.90 | 0 P |

\#
\# CORU
\#


A more realistic model for repeated measures data would allow the correlations to decrease as the lag increases such as occurs with the first order autoregressive model. However, since the heights are not measured at equally spaced time points we use the EXP model. The correlation function is given by

$$
\rho(u)=\phi^{u}
$$

where $u$ is the time lag is weeks. The coding for this is

```
y1 y3 y5 y7 y10 ~ Trait tmt Tr.tmt
1 0 # One error structure in two dimensions
14 # Outer dimension: 14 plants
Tr 0 EXP . }
135710 # Time coordinates
```

A portion of the output is


When fitting power models be careful to ensure the scale of the defining variate, here time, does not result in an estimate of $\phi$ too close to 1 . For example, use of days in this example would result in an estimate for $\phi$ of about .993 .


Figure 15.4 Residual plots for the EXP variance model for the plant data

The residual plot from this analysis is presented in Figure 15.4. This suggests increasing variance over time. This can be modelled by using the EXPH model,
which models $\Sigma$ by

$$
\boldsymbol{\Sigma}=\boldsymbol{D}^{0.5} \boldsymbol{C} \boldsymbol{D}^{0.5}
$$

where $\boldsymbol{D}$ is a diagonal matrix of variances and $\boldsymbol{C}$ is a correlation matrix with elements given by $c_{i j}=\phi^{\left|t_{i}-t_{j}\right|}$. The coding for this is

```
y1 y3 y5 y7 y10 ~ Trait tmt Tr.tmt
1 2 0
14 !S2==1
Tr O EXPH . 5 100 200 300 300 300
135710
```

Note that it is necessary to fix the scale parameter to $1(!S 2==1)$ to ensure that the elements of $\boldsymbol{D}$ are identifiable. Abbreviated output from this analysis is


The last two models we fit are the antedependence model of order 1 and the unstructured model. These require, as starting values the lower triangle of the full variance matrix. We use the REML estimate of $\boldsymbol{\Sigma}$ from the heterogeneous
power model shown in the previous output. The antedependence model models $\boldsymbol{\Sigma}$ by the inverse cholesky decomposition

$$
\boldsymbol{\Sigma}^{-1}=\boldsymbol{U} \boldsymbol{D} \boldsymbol{U}^{\prime}
$$

where $\boldsymbol{D}$ is a diagonal matrix and $\boldsymbol{U}$ is a unit upper triangular matrix. For an antedependence model of order $q$, then $u_{i j}=0$ for $j>i+q-1$. The antedependence model of order 1 has 9 parameters for these data, 5 in $\boldsymbol{D}$ and 4 in $\boldsymbol{U}$. The input is given by

```
y1 y3 y5 y7 y10 ~ Trait tmt Tr.tmt
120
14 !S2==1
Tr 0 ANTE
 60.16
 54.65 73.65
 91.50 123.3 306.4
 89.17 120.2 298.6 431.8
 62.21 83.85 208.3 301.2 379.8
```

The abbreviated output file is

| $1 \mathrm{LogL=}=171.501$ | $\mathrm{S} 2=1.0000$ | 60 df |  |  |
| :---: | :---: | :---: | :---: | :---: |
| $2 \mathrm{LogL=-170.097}$ | S2 $=1.0000$ | 60 df |  |  |
| $3 \mathrm{LogL=}=166.085$ | S2 $=1.0000$ | 60 df |  |  |
| $4 \mathrm{LogL=}=161.335$ | S2 $=1.0000$ | 60 df |  |  |
| $5 \mathrm{LogL=}=160.407$ | S2 $=1.0000$ | 60 df |  |  |
| $6 \mathrm{LogL}=-160.370$ | S2 $=1.0000$ | 60 df |  |  |
| $7 \mathrm{LogL=}=160.369$ | S2 $=1.0000$ | 60 df |  |  |
| Source Model | terms Gamma | Component | Comp/SE | \% C |
| Residual ANTE=UDU | $10.268657 \mathrm{E}-01$ | $0.268657 \mathrm{E}-01$ | 2.44 | 0 U |
| Residual ANTE=UDU | $1-0.628413$ | -0.628413 | -2.55 | 0 U |
| Residual ANTE=UDU | $20.372801 \mathrm{E}-01$ | $0.372801 \mathrm{E}-01$ | 2.41 | 0 U |
| Residual ANTE=UDU | $2-1.49108$ | -1.49108 | -2.54 | 0 U |
| Residual ANTE=UDU | $3 \quad 0.599632 \mathrm{E}-02$ | $0.599632 \mathrm{E}-02$ | 2.43 | 0 U |
| Residual ANTE=UDU | $3-1.28041$ | -1.28041 | -6.19 | 0 U |
| Residual ANTE=UDU | $4 \quad 0.789713 \mathrm{E}-02$ | $0.789713 \mathrm{E}-02$ | 2.44 | 0 U |
| Residual ANTE=UDU | $4-0.967815$ | -0.967815 | -15.40 | 0 U |
| Residual ANTE=UDU | $50.390635 \mathrm{E}-01$ | $0.390635 \mathrm{E}-01$ | 2.45 | 0 U |
| Covariance/Variance/Correlation Matrix ANTE=UDU' |  |  |  |  |
| 37.200 .5946 | $0.3549 \quad 0.3114$ | 0.3040 |  |  |
| 23.38 41.55 | 0.59680 .5237 | 0.5112 |  |  |
| $34.83 \quad 61.89$ | 258.90 .8775 | 0.8565 |  |  |
| $44.58 \quad 79.22$ | 331.4550 .8 | 0.9761 |  |  |
| $43.14 \quad 76.67$ | 320.7533 .0 | 541.4 |  |  |
| Analysis of Variance |  | DF F_inc |  |  |
| 8 Trait |  | $5 \quad 188.84$ |  |  |

1 tmt
14.14
9 Tr.tmt
3.91

The iterative sequence converged and the antedependence parameter estimates are printed columnwise by time, the column of $\boldsymbol{U}$ and the element of $\boldsymbol{D}$. I.e.

$$
\boldsymbol{D}=\operatorname{diag}\left[\begin{array}{c}
0.0269 \\
0.0373 \\
0.0060 \\
0.0079 \\
0.0391
\end{array}\right], \boldsymbol{U}=\left[\begin{array}{ccccc}
1 & -0.6284 & 0 & 0 & 0 \\
0 & 1 & -1.4911 & 0 & 0 \\
0 & 0 & 1 & -1.2804 & 0 \\
0 & 0 & 0 & 1 & -0.9678 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Finally the input and output files for the unstructured model are presented below. The REML estimate of $\boldsymbol{\Sigma}$ from the ANTE model is used to provide starting values.

```
###########
#input
###########
y1 y3 y5 y7 y10 ~ Trait tmt Tr.tmt
120
14 !S2==1
Tr O US
 37.20
 23.38 41.55
 34.83 61.89 258.9
 44.58 79.22 331.4 550.8
 43.14 76.67 320.7 533.0 541.4
############
output
############
\begin{tabular}{lll}
1 LogL \(=-160.368\) & \(\mathrm{~S} 2=1.0000\) & 60 df \\
2 LogL \(=-159.027\) & \(\mathrm{~S} 2=1.0000\) & 60 df \\
3 LogL \(=-158.247\) & \(\mathrm{~S} 2=1.0000\) & 60 df \\
4 LogL \(=-158.040\) & \(\mathrm{~S} 2=1.0000\) & 60 df \\
5 LogL \(=-158.036\) & \(\mathrm{~S} 2=1.0000\) & 60 df
\end{tabular}
\begin{tabular}{lrcccccc}
Source & Model & terms & Gamma & Component & Comp/SE & \% C \\
Residual US=UnStr & 1 & 37.2262 & 37.2262 & 2.45 & 0 & U \\
Residual US=UnStr & 1 & 23.3935 & 23.3935 & 1.77 & 0 & U \\
Residual US=UnStr & 2 & 41.5195 & 41.5195 & 2.45 & 0 & U \\
Residual US=UnStr & 1 & 51.6524 & 51.6524 & 1.61 & 0 & U \\
Residual US=UnStr & 2 & 61.9169 & 61.9169 & 1.78 & 0 & U \\
Residual US=UnStr & 3 & 259.121 & 259.121 & 2.45 & 0 & U \\
Residual US=UnStr & 1 & 70.8113 & 70.8113 & 1.54 & 0 & U
\end{tabular}
```

| Residual US=UnStr | 2 | 57.6146 | 57.6146 | 1.23 | 0 | U |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Residual US=UnStr | 3 | 331.807 | 331.807 | 2.29 | 0 | U |
| Residual US=UnStr | 4 | 551.507 | 551.507 | 2.45 | 0 | U |
| Residual US=UnStr | 1 | 73.7857 | 73.7857 | 1.60 | 0 | U |
| Residual US=UnStr | 2 | 62.5691 | 62.5691 | 1.33 | 0 | U |
| Residual US=UnStr | 3 | 330.851 | 330.851 | 2.29 | 0 | U |
| Residual US=UnStr | 4 | 533.756 | 533.756 | 2.42 | 0 | U |
| Residual US=UnStr | 5 | 542.175 | 542.175 | 2.45 | 0 | U |
| Covariance/Variance/Correlation Matrix | US=UnStructu |  |  |  |  |  |
| 37.23 | 0.5950 | 0.5259 | 0.4942 | 0.5194 |  |  |
| 23.39 | 41.52 | 0.5969 | 0.3807 | 0.4170 |  |  |
| 51.65 | 61.92 | 259.1 | 0.8777 | 0.8827 |  |  |
| 70.81 | 57.61 | 331.8 | 551.5 | 0.9761 |  |  |
| 73.79 | 62.57 | 330.9 | 533.8 | 542.2 |  |  |

The antedependence model of order 1 is clearly more parsimonious than the unstructured model. Table 15.5 presents the incremental Wald tests for each of the variance models. There is a surprising level of discrepancy between models for the Wald tests. The main effect of treatment is significant for the uniform, power and antedependence models.

Table 15.5: Summary of Wald test for fixed effects for variance models fitted to the plant data

| model | treatment <br> $(\mathrm{df}=1)$ | treatment.time <br> $(\mathrm{df}=4)$ |
| :--- | ---: | ---: |
| Uniform | 9.41 | 5.10 |
| Power | 6.86 | 6.13 |
| Heterogeneous power | 0.00 | 4.81 |
| Antedependence (order 1) | 4.14 | 3.96 |
| Unstructured | 1.71 | 4.46 |

### 15.6 Spatial analysis of a field experiment - Barley

In this section we illustrate the ASReml syntax for performing spatial and incomplete block analysis of a field experiment. There has been a large amount of interest in developing techniques for the analysis of spatial data both in the context of field experiments and geostatistical data (see for example, Cullis and Gleeson, 1991; Cressie, 1991; Gilmour et al., 1997). This example illustrates the analysis of 'so-called' regular spatial data, in which the data is observed on a lattice or regular grid. This is typical of most small plot designed field experiments. Spatial data is often irregularly spaced, either by design or because of the observational nature of the study. The techniques we present in the following can be extended for the analysis of irregularly spaced spatial data, though, larger spatial data sets may be computationally challenging, depending on the degree of irregularity or models fitted.

The data we consider is taken from Gilmour et al. (1995) and involves a field experiment designed to compare the performance of 25 varieties of barley. The experiment was conducted at Slate Hall Farm, UK in 1976, and was designed as a balanced lattice square with replicates laid out as shown in Table 15.6. The data fields were Rep, RowBlk, ColBlk, row, column and yield. Lattice row and column numbering is typically within replicates and so the terms specified in the linear model to account for the lattice row and lattice column effects would be Rep.latticerow Rep.latticecolumn. However, in this example lattice rows and columns are both numbered from 1 to 30 across replicates (see Table 15.6). The terms in the linear model are therefore simply RowBlk ColBlk. Additional fields row and column indicate the spatial layout of the plots.

The ASReml input file is presented below. Three models have been fitted to these data. The lattice analysis is included for comparison in PATH 3. In PATH 1 we use the separable first order autoregressive model to model the variance structure of the plot errors. Gilmour et al. (1997) suggest this is often a useful model to commence the spatial modelling process. The form of the variance matrix for the plot errors ( R structure) is given by

$$
\begin{equation*}
\sigma^{2} \boldsymbol{\Sigma}=\sigma^{2}\left(\boldsymbol{\Sigma}_{c} \otimes \boldsymbol{\Sigma}_{r}\right) \tag{15.5}
\end{equation*}
$$

where $\boldsymbol{\Sigma}_{c}$ and $\boldsymbol{\Sigma}_{r}$ are $15 \times 15$ and $10 \times 10$ matrix functions of the column $\left(\phi_{c}\right)$ and row $\left(\phi_{r}\right)$ autoregressive parameters respectively.

Gilmour et al. (1997) recommend revision of the current spatial model based on the use of diagnostics such as the sample variogram of the residuals (from
the current model). This diagnostic and a summary of row and column residual trends are produced by default with graphical versions of ASReml when a spatial model has been fitted to the errors. It can be suppressed, by the use of the -n option on the command line. We have produced the following plots by use of the -g22 option.

Table 15.6 Field layout of Slate Hall Farm experiment

| Column - Replicate levels |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Row | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 |
| 2 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 |
| 3 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 |
| 4 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 |
| 5 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 |
| 6 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 5 | 5 | 5 | 6 | 6 | 6 | 6 | 6 |
| 7 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 5 | 5 | 5 | 6 | 6 | 6 | 6 | 6 |
| 8 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 5 | 5 | 5 | 6 | 6 | 6 | 6 | 6 |
| 9 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 5 | 5 | 5 | 6 | 6 | 6 | 6 | 6 |
| 10 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 5 | 5 | 5 | 6 | 6 | 6 | 6 | 6 |
| Column - Rowblk levels |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Row | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| 1 | 1 | 1 | 1 | 1 | 1 | 11 | 11 | 11 | 11 | 11 | 21 | 21 | 21 | 21 | 21 |
| 2 | 2 | 2 | 2 | 2 | 2 | 12 | 12 | 12 | 12 | 12 | 22 | 22 | 22 | 22 | 22 |
| 3 | 3 | 3 | 3 | 3 | 3 | 13 | 13 | 13 | 13 | 13 | 23 | 23 | 23 | 23 | 23 |
| 4 | 4 | 4 | 4 | 4 | 4 | 14 | 14 | 14 | 14 | 14 | 24 | 24 | 24 | 24 | 24 |
| 5 | 5 | 5 | 5 | 5 | 5 | 15 | 15 | 15 | 15 | 15 | 25 | 25 | 25 | 25 | 25 |
| 6 | 6 | 6 | 6 | 6 | 6 | 16 | 16 | 16 | 16 | 16 | 26 | 26 | 26 | 26 | 26 |
| 7 | 7 | 7 | 7 | 7 | 7 | 17 | 17 | 17 | 17 | 17 | 27 | 27 | 27 | 27 | 27 |
| 8 | 8 | 8 | 8 | 8 | 8 | 18 | 18 | 18 | 18 | 18 | 28 | 28 | 28 | 28 | 28 |
| 9 | 9 | 9 | 9 | 9 | 9 | 19 | 19 | 19 | 19 | 19 | 29 | 29 | 29 | 29 | 29 |
| 10 | 10 | 10 | 10 | 10 | 10 | 20 | 20 | 20 | 20 | 20 | 30 | 30 | 30 | 30 | 30 |
| Column - Colblk levels |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Row | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| 1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| 2 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| 4 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| 5 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| 6 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
| 7 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
| 8 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
| 9 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
| 10 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |

```
Slate Hall example
 Rep 6 # Six replicates of 5x5 plots in 2x3 arrangement
 RowBlk 30 # Rows within replicates numbered across replicates
 ColBlk 30 # Columns within replicates numbered across replicates
 row 10 # Field row
 column 15 # Field column
```

```
 variety 25
 yield
barley.asd !skip 1 !DOPATH 1
!PATH 1 # AR1 x AR1
y ~ mu var
predict var
1 2
15 column AR1 0.1 # Second field is specified so ASReml can sort
10 row AR1 0.1 # records properly into field order
!PATH 2 # AR1 x AR1 + units
y ~ mu var !r units
predict var
12
15 column AR1 0.1
10 row AR1 0.1
!PATH 3 # incomplete blocks
y ~ mu var !r Rep Rowblk Colblk
predict var
```

Abbreviated ASReml output file is presented below. The iterative sequence has converged to column and row correlation parameters of (.68377,.45859) respectively. The plot size and orientation is not known and so it is not possible to ascertain whether these values are spatially sensible. It is generally found that the closer the plot centroids, the higher the spatial correlation. This is not always the case and if the highest between plot correlation relates to the larger spatial distance then this may suggest the presence of extraneous variation (see Gilmour et al., 1997), for example. Figure 15.5 presents a plot of the sample variogram of the residuals from this model. The plot appears in reasonable agreement with the model.

The next model includes a measurement error or nugget effect component. That is the variance model for the plot errors is now given by

$$
\begin{equation*}
\sigma^{2} \boldsymbol{\Sigma}=\sigma^{2}\left(\boldsymbol{\Sigma}_{c} \otimes \boldsymbol{\Sigma}_{r}\right)+\psi \boldsymbol{I}_{150} \tag{15.6}
\end{equation*}
$$

where $\psi$ is the ratio of nugget variance to error variance $\left(\sigma^{2}\right)$. The abbreviated output for this model is given below. There is a significant improvement in the REML log-likelihood with the inclusion of the nugget effect (see Table 15.7).

```
AR1 x AR1
#
 1 LogL=-739.681 S2= 36034. 125 df 1.000 0.1000 0.1000
```



Figure 15.5: Sample variogram of the residuals from the AR $1 \times$ AR1 model for the Slate Hall data


| Source | Model | terms | Gamma | Component | Comp/SE | $\%$ | C |
| :--- | :---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Variance | 150 | 125 | 1.00000 | 38756.6 | 5.00 | 0 | P |
| Residual | AR=AutoR | 15 | 0.683767 | 0.683767 | 10.80 | 0 | U |
| Residual | AR=AutoR | 10 | 0.458607 | 0.458607 | 5.55 | 0 | U |
|  |  |  |  |  |  |  |  |
| Analysis of Variance |  | NumDF | DenDF | F_inc | Prob |  |  |
| $\quad 8 \mathrm{mu}$ |  | 1 | 12.8 | 850.88 | $<.001$ |  |  |
| 6 variety |  | 24 | 80.0 | 13.04 | $<.001$ |  |  |



| $6 \mathrm{LogL=}=696.823$ | $\begin{aligned} & S 2=45753 . \\ & S 2=45796 . \end{aligned}$ |  | 125 df |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $7 \mathrm{LogL=}=696.823$ |  |  | 125 | df |  |  |  |
| Source | Model | terms | Gamma |  | Component | Comp/SE | \% C |
| units | 150 | 150 | 0.106154 |  | 4861.48 | 2.72 | 0 P |
| Variance | 150 | 125 | 1.00000 |  | 45796.3 | 2.74 | 0 P |
| Residual | AR=AutoR | 15 | 0.843795 |  | 0.843795 | 12.33 | 0 U |
| Residual | AR=AutoR | 10 | 0.682686 |  | 0.682686 | 6.68 | 0 U |
| Analysis of Variance |  |  | NumDF | DenDF | F_inc |  | Prob |
| 8 mu |  |  | 1 | 3.5 | 259.81 |  | <. 001 |
| 6 variety |  |  | 24 | 75.7 | 10.21 |  | <. 001 |

The lattice analysis (with recovery of between block information) is presented below. This variance model is not competitive with the preceding spatial models. The models can be formally compared using the BIC values for example.

| \# IB analysis |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $1 \mathrm{LogL=}=734.184$ | S2= | 26778. | 125 | df |  |  |  |
| 2 LogL=-720.060 | S2= | 16591. | 125 | df |  |  |  |
| $3 \mathrm{LogL=-711.119}$ | S2= | 11173. | 125 | df |  |  |  |
| $4 \mathrm{LogL=}=707.937$ | S2= | 8562.4 | 125 | df |  |  |  |
| $5 \mathrm{LogL=}=707.786$ | S2= | 8091.2 | 125 | df |  |  |  |
| $6 \mathrm{LogL=-707.786}$ | S2= | 8061.8 | 125 | df |  |  |  |
| $7 \mathrm{LogL=-707.786}$ | S2= | 8061.8 | 125 | df |  |  |  |
| Source | Model | terms | Gamma |  | Component | Comp/SE | \% C |
| Rep | 6 | 6 | 0.528714 |  | 4262.39 | 0.62 | 0 P |
| RowBlk | 30 | 30 | 1.93444 |  | 15595.1 | 3.06 | 0 P |
| ColBlk | 30 | 30 | 1.83725 |  | 14811.6 | 3.04 | 0 P |
| Variance | 150 | 125 | 1.00000 |  | 8061.81 | 6.01 | 0 P |
| Analysis of Variance |  |  | NumDF | DendF | F_inc |  | Prob |
| 8 mu |  |  | 1 | 5.0 | 1216.29 |  | <. 001 |
| 6 variety |  |  | 24 | 79.3 | 8.84 |  | <. 001 |

Finally, we present portions of the .pvs files to illustrate the prediction facility of ASReml. The first five and last three variety means are presented for illustration. The overall SED printed is the square root of the average variance of difference between the variety means. The two spatial analyses have a range of SEDs which are available if the !SED qualifier is used. All variety comparisons have the same SED from the third analysis as the design is a balanced lattice square. The Fstatistic statistics for the spatial models are greater than for the lattice analysis. We note the F-statistic for the AR1×AR1 + units model is smaller than the Fstatistic for the AR1×AR1.

```
Predicted values of yield
#AR1 x AR1
 variety Predicted_Value Standard_Error Ecode
 1.0000 1257.9763 64.6146 E
 2.0000 1501.4483 64.9783 E
 3.0000 1404.9874 64.6260 E
 4.0000 1412.5674 64.9027 E
 5.0000 1514.4764 65.5889 E
 23.0000 1311.4888 64.0767 E
 24.0000 1586.7840 64.7043 E
 25.0000 1592.0204 63.5939 E
 SED: Overall Standard Error of Difference 59.05
#AR1 x AR1 + units
 variety Predicted_Value Standard_Error Ecode
 1.0000 1245.5843 97.8591 E
 2.0000 1516.2331 97.8473 E
 3.0000 1403.9863 98.2398 E
 4.0000 1404.9202 97.9875 E
 5.0000 1471.6197 98.3607 E
 23.0000 1316.8726 98.0402 E
 24.0000 1557.5278 98.1272 E
 25.0000 1573.8920 97.9803 E
 SED: Overall Standard Error of Difference 60.51
IB
 Rep is ignored in the prediction
 RowBlk is ignored in the prediction
 ColBlk is ignored in the prediction
 variety Predicted_Value Standard_Error Ecode
 1.0000 1283.5870 60.1994 E
 2.0000 1549.0133 60.1994 E
 3.0000 1420.9307 60.1994 E
 4.0000 1451.8554 60.1994 E
 5.0000 1533.2749 60.1994 E
 23.0000 1329.1088 60.1994 E
 24.0000 1546.4699 60.1994 E
 25.0000 1630.6285 60.1994 E
 SED: Overall Standard Error of Difference 62.02
```

Notice the differences in SE and SED associated with the various models. Choosing a model on the basis of smallest SE or SED is not recommended because the model is not necessarily fitting the variability present in the data.

Table 15.7 Summary of models for the Slate Hall data

| model | REML <br> log-likelihood | number of parameters | F-statistic | SED |
| :---: | :---: | :---: | :---: | :---: |
| AR $1 \times$ AR1 | -700.32 | 3 | 13.04 | 59.0 |
| AR1×AR1 + units | -696.82 | 4 | 10.22 | 60.5 |
| IB | -707.79 | 4 | 8.84 | 62.0 |

### 15.7 Unreplicated early generation variety trial - Wheat

To further illustrate the approaches presented in the previous section, we consider an unreplicated field experiment conducted at Tullibigeal situated in southwestern NSW. The trial was an S1 (early stage) wheat variety evaluation trial and consisted of 525 test lines which were randomly assigned to plots in a 67 by 10 array. There was a check plot variety every 6 plots within each column. That is the check variety was sown on rows $1,7,13, \ldots, 67$ of each column. This variety was numbered 526 . A further 6 replicated commercially available varieties (numbered 527 to 532 ) were also randomly assigned to plots with between 3 to 5 plots of each. The aim of these trials is to identify and retain the top, say $20 \%$ of lines for further testing. Cullis et al. (1989) considered the analysis of early generation variety trials, and presented a one-dimensional spatial analysis which was an extension of the approach developed by Gleeson and Cullis (1987). The test line effects are assumed random, while the check variety effects are considered fixed. This may not be sensible or justifiable for most trials and can lead to inconsistent comparisons between check varieties and test lines. Given the large amount of replication afforded to check varieties there will be very little shrinkage irrespective of the realised heritability.

We consider an initial analysis with spatial correlation in one direction and fitting the variety effects (check, replicated and unreplicated lines) as random. We present three further spatial models for comparison. The ASReml input file is

```
Tullibigeal trial
 linenum
 yield
 weed
 column 10
 row }6
 variety 532 # testlines 1:525, check lines 526:532
```

```
wheat.asd !skip 1 !DOPATH 1
PATH 1 # AR1 x I
y ~ mu weed mv !r variety
12
6 7 \text { row AR1 0.1}
10 column I 0
!PATH 2 # AR1 x AR1
y ~ mu weed mv !r variety
12
6 7 \text { row AR1 0.1}
10 column AR1 0.1
!PATH 3 # AR1 x AR1 + column trend
y ~ mu weed pol(column,-1) mv !r variety
12
6 7 \text { row AR1 0.1}
10 column AR1 0.1
!PATH 4 # AR1 x AR1 + Nugget + column trend
y ~ mu weed pol(column,-1) mv !r variety units
12
6 7 \text { row AR1 0.1}
10 column AR1 0.1
predict var
```

The data fields represent the factors variety, row and column, a covariate weed and the plot yield (yield). There are three paths in the ASReml file. We begin with the one-dimensional spatial model, which assumes the variance model for the plot effects within columns is described by a first order autoregressive process. The abbreviated output file is


| Analysis of Variance | NumDF | DenDF | F_inc | Prob |
| :---: | ---: | ---: | ---: | ---: |
| 7 mu | 1 | 83.6 | 9799.18 | $<.001$ |
| 3 weed | 1 | 477.0 | 109.33 | $<.001$ |

The iterative sequence converged, the REML estimate of the autoregressive parameter indicating substantial within column heterogeneity.

The abbreviated output from the two-dimensional AR1 $\times$ AR1 spatial model is

| $1 \mathrm{LogL=}=-4277.99$ | $\mathrm{S} 2=0.12850 \mathrm{E}+06 \quad 6$ |  |  | 666 df |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $2 \mathrm{LogL=-4266.13}$ | $\mathrm{S} 2=0.12097 \mathrm{E}+06$ |  |  | 666 df |  |  |  |
| $3 \mathrm{LogL=-4253.05}$ | S2 $=0$. | 0777E+ | +06 666 | 666 df |  |  |  |
| $4 \mathrm{LogL=-4238.72}$ | S2 $=8$ | 3156. |  | 666 df |  |  |  |
| $5 \mathrm{LogL=-4234.53}$ | S2 $2=7$ | 868. |  | 666 df |  |  |  |
| $6 \mathrm{LogL}=-4233.78$ | S2= 8 | 2024. |  | 666 df |  |  |  |
| $7 \mathrm{LogL}=-4233.67$ | S2 $2=8$ | 725. |  | 666 df |  |  |  |
| 8 LogL=-4233.65 | S2= 82 | 975. |  | 666 df |  |  |  |
| $9 \mathrm{LogL=-4233.65}$ | $\mathrm{S} 2=83$ | 3065. |  | 666 df |  |  |  |
| 10 LogL=-4233.65 | S2 $=83100$. |  |  | 666 df |  |  |  |
| Source | Model | terms | Gamma |  | Component | Comp/SE | \% C |
| variety | 532 | 532 | 1.06038 |  | 88117.5 | 9.92 | 0 P |
| Variance | 670 | 666 | 1.00000 |  | 83100.1 | 8.90 | 0 P |
| Residual | AR=AutoR | 67 | 0.685387 |  | 0.685387 | 16.65 | 0 U |
| Residual | AR=Autor |  | 0.285909 |  | 0.285909 | 3.87 | 0 U |
| Analysis of Variance |  |  | NumDF | DenDF | F_inc |  | Prob |
| 7 mu |  |  | 1 | 41.7 | 6248.65 |  | <. 001 |
| 3 weed |  |  | 1 | 491.2 | 85.84 |  | <. 001 |

The change in REML log-likelihood is significant $\left(\chi_{1}^{2}=12.46, p<.001\right)$ with the inclusion of the autoregressive parameter for columns. Figure 15.6 presents the sample variogram of the residuals for the AR1×AR1 model. There is an indication that a linear drift from column 1 to column 10 is present. We include a linear regression coefficient pol (column,-1) in the model to account for this. Note we use the '- 1 ' option in the pol term to exclude the overall constant in the regression, as it is already fitted. The linear regression of column number on yield is significant $(t=-2.96)$. The sample variogram (Figure 15.7) is more satisfactory, though interpretation of variograms is often difficult, particularly for unreplicated trials. This is an issue for further research. The abbreviated output for this model and the final model in which a nugget effect has been included is

```
#AR1xAR1 + pol(column,-1)
 1 LogL=-4270.99 S2= 0.12730E+06 665 df
 2 LogL=-4258.95 S2= 0.11961E+06 665 df
```



Figure 15.6: Sample variogram of the residuals from the AR1 $\times$ AR1 model for the Tullibigeal data


Figure 15.7: Sample variogram of the residuals from the AR1×AR1 + pol (column, -1) model for the Tullibigeal data

| $3 \mathrm{LogL=}-4245.27$ | $\mathrm{S} 2=0.10545 \mathrm{E}+06$ |  |  | 665 df |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $4 \mathrm{LogL=}=4229.50$ | S2 $=7$ | 8387. |  | 665 df |  |  |  |  |
| $5 \mathrm{LogL=}-4226.02$ | S2= 7 | 5375. |  | 665 | df |  |  |  |
| $6 \mathrm{LogL=}=4225.64$ | S2= 7 | 373. |  | 665 | df |  |  |  |
| $7 \mathrm{LogL}=-4225.60$ | S2= 7 | 710. |  | 665 | df |  |  |  |
| $8 \mathrm{LogL}=-4225.60$ | S2 $=7$ | 786. |  | 665 | df |  |  |  |
| $9 \mathrm{LogL=-4225.60}$ | $\mathrm{S} 2=7$ | 806. |  | 665 | df |  |  |  |
| Source | Model | terms |  | Gamma |  | Component | Comp/SE | \% C |
| variety | 532 | 532 |  | 14370 |  | 88986.3 | 9.91 | 0 P |
| Variance | 670 | 665 |  | 00000 |  | 77806.0 | 8.79 | 0 P |
| Residual | AR=AutoR | 67 | 0.6 | 71436 |  | 0.671436 | 15.66 | 0 U |
| Residual | AR=AutoR | 10 | 0.2 | 66088 |  | 0.266088 | 3.53 | 0 U |
| Analysis of Variance |  |  | NumDF |  | DenDF | F_inc |  | Prob |
| 7 mu |  |  | 1 |  | 42.5 | 7073.70 |  | <. 001 |
| 3 weed |  |  | 1 |  | 457.4 | 91.91 |  | <. 001 |
| $8 \mathrm{pol}(\mathrm{column},-1)$ |  |  | 1 |  | 50.8 | 8.73 |  | 0.005 |

## \#

\#AR1xAR1 + units + pol(column, -1)
\#


The increase in REML log-likelihood is significant. The predicted means for the varieties can be produced and printed in the .pvs file as

| Warning: mv_estimates | is ignored for prediction |
| :--- | :--- |
| Warning: units | is ignored for prediction |

```
column evaluated at 5.5000
weed is evaluated at average value of 0.4597
Predicted values of yield
variety Predicted_Value Standard_Error Ecode
 1.0000 2917.1782 179.2881 E
 2.0000 2957.7405 178.7688 E
 3.0000 2872.7615 176.9880 E
 4.0000 2986.4725 178.7424 E
 522.0000 2784.7683 179.1541 E
 523.0000 2904.9421 179.5383 E
 524.0000 2740.0330 178.8465 E
 525.0000 2669.9565 179.2444 E
 526.0000 2385.9806 44.2159 E
 527.0000 2697.0670 133.4406 E
 528.0000 2727.0324 112.2650 E
 529.0000 2699.8243 103.9062 E
 530.0000 3010.3907 112.3080 E
 531.0000 3020.0720 112.2553 E
 532.0000 3067.4479 112.6645 E
SED: Overall Standard Error of Difference 245.8
```

Note that the (replicated) check lines have lower SE than the (unreplicated) test lines. There will also be large diffeneces in SEDs. Rather than obtaining the large table of all SEDs, you could do the prediction in parts
predict var 1:525 column 5.5
predict var 526:532 column 5.5 !SED
to examine the matrix of pairwise prediction errors of variety differences.

### 15.8 Paired Case-Control study - Rice

This data is concerned with an experiment conducted to investigate the tolerance of rice varieties to attack by the larvae of bloodworms. The data have been kindly provided by Dr. Mark Stevens, Yanco Agricultural Institute. A full description of the experiment is given by Stevens et al. (1999). Bloodworms are a significant pest of rice in the Murray and Murrumbidgee irrigation areas where they can cause poor establishment and substantial yield loss.

The experiment commenced with the transplanting of rice seedlings into trays. Each tray contained 32 seedlings and the trays were paired so that a control tray (no bloodworms) and a treated tray (bloodworms added) were grown in a controlled environment room for the duration of the experiment. At the end
of this time rice plants were carefully extracted, the root system washed and root area determined for the tray using an image analysis system described by Stevens et al. (1999). Two pairs of trays, each pair corresponding to a different variety, were included in each run. A new batch of bloodworm larvae was used for each run. A total of 44 varieties was investigated with three replicates of each. Unfortunately the variety concurrence within runs was less than optimal. Eight varieties occurred with only one other variety, 22 with two other varieties and the remaining 14 with three different varieties.

In the next three sections we present an exhaustive analysis of these data using equivalent univariate and multivariate techniques. It is convenient to use two data files one for each approach. The univariate data file consists of factors pair, run, variety, tmt, unit and variate rootwt. The factor unit labels the individual trays, pair labels pairs of trays (to which varieties are allocated) and tmt is the two level bloodworm treatment factor (control/treated). The multivariate data file consists of factors variety and run and variates for root weight of both the control and exposed treatments (labelled yc and ye respectively).

Preliminary analyses indicated variance heterogeneity so that subsequent analyses were conducted on the square root scale. Figure 15.8 presents a plot of the treated and the control root area (on the square root scale) for each variety. There is a strong dependence between the treated and control root area, which is not surprising. The aim of the experiment was to determine the tolerance of varieties to bloodworms and thence identify the most tolerant varieties. The definition of tolerance should allow for the fact that varieties differ in their inherent seedling vigour (Figure 15.8). The original approach of the scientist was to regress the treated root area against the control root area and define the index of vigour as the residual from this regression. This approach is clearly inefficient since there is error in both variables. We seek to determine an index of tolerance from the joint analysis of treated and control root area.

## Standard analysis

The allocation of bloodworm treatments within varieties and varieties within runs defines a nested block structure of the form

```
run/variety/tmt = run + run.variety + run.variety.tmt
 (= run + pair + pair.tmt)
 (= run + run.variety + units)
```



Figure 15.8: Rice bloodworm data: Plot of square root of root weight for treated versus control

There is an additional blocking term, however, due to the fact that the bloodworms within a run are derived from the same batch of larvae whereas between runs the bloodworms come from different sources. This defines a block structure of the form

```
run/tmt/variety = run + run.tmt + run.tmt.variety
 (= run + run.tmt + pair.tmt)
```

Combining the two provides the full block structure for the design, namely

```
 run + run.variety + run.tmt + run.tmt.variety
= run + run.variety + run.tmt + units
= run + pair + run.tmt + pair.tmt
```

In line with the aims of the experiment the treatment structure comprises variety and treatment main effects and treatment by variety interactions. In the traditional approach the terms in the block structure are regarded as random and the treatment terms as fixed. The choice of treatment terms as fixed or random depends largely on the aims of the experiment. The aim of this example is to select the "best" varieties. The definition of best is somewhat more complex since it does not involve the single trait sqrt(rootwt) but rather two traits,
namely sqrt(rootwt) in the presence/absence of bloodworms. Thus to minimise selection bias the variety main effects and thence the tmt.variety interactions are taken as random. The main effect of treatment is fitted as fixed to allow for the likely scenario that rather than a single population of treatment by variety effects there are in fact two populations (control and treated) with a different mean for each. There is evidence of this prior to analysis with the large difference in mean sqrt(rootwt) for the two groups (14.93 and 8.23 for control and treated respectively). The inclusion of tmt as a fixed effect ensures that BLUPs of tmt.variety effects are shrunk to the correct mean (treatment means rather than an overall mean).

The model for the data is given by

$$
\begin{equation*}
\boldsymbol{y}=\boldsymbol{X} \boldsymbol{\tau}+\boldsymbol{Z}_{1} \boldsymbol{u}_{1}+\boldsymbol{Z}_{2} \boldsymbol{u}_{2}+\boldsymbol{Z}_{3} \boldsymbol{u}_{3}+\boldsymbol{Z}_{4} \boldsymbol{u}_{4}+\boldsymbol{Z}_{5} \boldsymbol{u}_{5}+\boldsymbol{e} \tag{15.7}
\end{equation*}
$$

where $\boldsymbol{y}$ is a vector of length $n=264$ containing the sqrt(rootwt) values, $\boldsymbol{\tau}$ corresponds to a constant term and the fixed treatment contrast and $\boldsymbol{u}_{1} \ldots \boldsymbol{u}_{5}$ correspond to random variety, treatment by variety, run, treatment by run and variety by run effects. The random effects and error are assumed to be independent Gaussian variables with zero means and variance structures var $\left(\boldsymbol{u}_{i}\right)=\sigma_{i}^{2} \boldsymbol{I}_{b_{i}}$ (where $b_{i}$ is the length of $\boldsymbol{u}_{i}, i=1 \ldots 5$ ) and $\operatorname{var}(\boldsymbol{e})=\sigma^{2} \boldsymbol{I}_{n}$.

The ASReml code for this analysis is

```
Bloodworm data Dr M Stevens
 pair 132
 rootwt
 run 66
 tmt 2 !A
 id
 variety 44 !A
rice.asd !skip 1 !DOPATH 1
!PATH 1
sqrt(rootwt) ~ mu tmt !r variety variety.tmt run pair run.tmt
O O O
!PATH 2
sqrt(rootwt) ~ mu tmt !r variety tmt.variety run pair tmt.run,
uni(tmt,2)
0 0 2
tmt.variety 2
2 0 DIAG . 1 . 1 !GU
44 0 0
tmt.run 2
2 0 DIAG .1 .1 !GU
66 0 0
```

Table 15.8: Estimated variance components from univariate analyses of bloodworm data. (a) Model with homogeneous variance for all terms and (b) Model with heterogeneous variance for interactions involving tmt

|  | (a) | $(\mathrm{b})$ |  |
| :--- | :---: | :---: | :---: |
| source |  | control |  | treated

The two paths in the input file define the two univariate analyses we will conduct. We consider the results from the analysis defined in PATH 1 first. A portion of the output file is

| $5 \operatorname{LogL}=-345.306$ | $\mathrm{~S} 2=$ | 1.3216 |
| :--- | :--- | :--- |
| $6 \log L=-345.267$ | $\mathrm{~S} 2=$ | 1.3155 |
| 7 LogL=-345.264 | $\mathrm{S} 2=1.3149$ | 262 df |
| 8 LogL=-345.263 | $\mathrm{S} 2=1.3149$ | 262 df |
| 262 df |  |  |


| Source | Model | terms | Gamma | Component | Comp/SE | $\%$ | C |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| variety | 44 | 44 | 1.80947 | 2.37920 | 3.01 | 0 | P |
| run | 66 | 66 | 0.244243 | 0.321144 | 0.59 | 0 | P |
| variety.tmt | 88 | 88 | 0.374220 | 0.492047 | 1.78 | 0 | P |
| pair | 132 | 132 | 0.742328 | 0.976057 | 2.51 | 0 | P |
| run.tmt | 132 | 132 | 1.32973 | 1.74841 | 3.65 | 0 | P |
| Variance | 264 | 262 | 1.00000 | 1.31486 | 4.42 | 0 | P |
|  |  |  |  |  |  |  |  |
| Analysis of Variance |  |  | NumDF | DenDF | F_inc |  | Prob |
| $\quad 7$ mu |  | 1 | 53.5 | 1484.27 | $<.001$ |  |  |
| $\quad 4$ tmt |  | 1 | 60.4 | 469.36 | $<.001$ |  |  |

The estimated variance components from this analysis are given in column (a) of table 15.8. The variance component for the variety main effects is large. There is evidence of tmt.variety interactions so we may expect some discrimination between varieties in terms of tolerance to bloodworms.

Given the large difference ( $p<0.001$ ) between tmt means we may wish to allow for heterogeneity of variance associated with tmt. Thus we fit a separate variety variance for each level of tmt so that instead of assuming $\operatorname{var}\left(\boldsymbol{u}_{2}\right)=\sigma_{2}^{2} \boldsymbol{I}_{88}$ we assume

$$
\operatorname{var}\left(\boldsymbol{u}_{2}\right)=\left[\begin{array}{cc}
\sigma_{2 c}^{2} & 0 \\
0 & \sigma_{2 t}^{2}
\end{array}\right] \otimes \boldsymbol{I}_{44}
$$

where $\sigma_{2 c}^{2}$ and $\sigma_{2 t}^{2}$ are the tmt. variety interaction variances for control and treated respectively. This model can be achieved using a diagonal variance structure for the treatment part of the interaction. We also fit a separate run variance for each level of tmt and heterogeneity at the residual level, by including the uni (tmt, 2) term. We have chosen level 2 of tmt as we expect more variation for the exposed treatment and thus the extra variance component for this term should be positive. Had we mistakenly specified level 1 then ASReml would have estimated a negative component by setting the !GU option for this term. The portion of the ASReml output for this analysis is

| $6 \operatorname{LogL=-343.428~}$ | S2= 1 | . 1498 |  |  | 1 components constrained |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $7 \mathrm{LogL=}=343.234$ | S2= 1 | . 1531 | 262 | df |  |  |  |
| $8 \mathrm{LogL}=-343.228$ | S2= 1 | . 1572 | 262 |  |  |  |  |
| $9 \mathrm{LogL}=-343.228$ | $\mathrm{S} 2=1$ | . 1563 | 262 |  |  |  |  |
| Source | Model | terms | Gamma |  | Component | Comp/SE | \% C |
| variety | 44 | 44 | 2.01903 |  | 2.33451 | 3.01 | 0 P |
| run | 66 | 66 | 0.276045 |  | 0.319178 | 0.59 | 0 P |
| pair | 132 | 132 | 0.853941 |  | 0.987372 | 2.59 | 0 P |
| uni (tmt, 2) | 264 | 264 | 0.176158 |  | 0.203684 | 0.32 | 0 P |
| Variance | 264 | 262 | 1.00000 |  | 1.15625 | 2.77 | 0 P |
| tmt.variety | DIAGonal | 1 | 1.30142 |  | 1.50477 | 2.26 | 0 U |
| tmt.variety | DIAGonal | 2 | -0.321901 |  | -0.372199 | -0.82 | 0 U |
| tmt.run | DIAGonal | 1 | 1.20098 |  | 1.38864 | 2.18 | 0 U |
| tmt.run | DIAGonal | 2 | 1.92457 |  | 2.22530 | 3.07 | 0 U |
| Analysis of Variance |  |  | NumDF | DenDF | F_inc |  | Prob |
| 7 mu |  |  | 1 | 56.5 | 1276.73 |  | <. 001 |
| 4 tmt |  |  | 1 | 60.6 | . 448.83 |  | <. 001 |

The estimated variance components from this analysis are given in column (b) of table 15.8. There is no significant variance heterogeneity at the residual or tmt.run level. This indicates that the square root transformation of the data has successfully stabilised the error variance. There is, however, significant variance heterogeneity for tmt. variety interactions with the variance being much greater for the control group. This reflects the fact that in the absence of bloodworms the potential maximum root area is greater. Note that the tmt.variety interaction variance for the treated group is negative. The negative component is meaningful
(and in fact necessary and obtained by use of the ! GU option) in this context since it should be considered as part of the variance structure for the combined variety main effects and treatment by variety interactions. That is,

$$
\operatorname{var}\left(\mathbf{1}_{2} \otimes \boldsymbol{u}_{1}+\boldsymbol{u}_{2}\right)=\left[\begin{array}{cc}
\sigma_{1}^{2}+\sigma_{2 c}^{2} & \sigma_{1}^{2}  \tag{15.8}\\
\sigma_{1}^{2} & \sigma_{1}^{2}+\sigma_{2 t}^{2}
\end{array}\right] \otimes \boldsymbol{I}_{44}
$$

Using the estimates from table 15.8 this structure is estimated as

$$
\left[\begin{array}{ll}
3.84 & 2.33 \\
2.33 & 1.96
\end{array}\right] \otimes \boldsymbol{I}_{44}
$$

Thus the variance of the variety effects in the control group (also known as the genetic variance for this group) is 3.84 . The genetic variance for the treated group is much lower (1.96). The genetic correlation is $2.33 / \sqrt{3.84 * 1.96}=0.85$ which is strong, supporting earlier indications of the dependence between the treated and control root area (Figure 15.8).

## A multivariate approach

In this simple case in which the variance heterogeneity is associated with the two level factor tmt, the analysis is equivalent to a bivariate analysis in which the two traits correspond to the two levels of tmt, namely sqrt(rootwt) for control and treated. The model for each trait is given by

$$
\begin{equation*}
\boldsymbol{y}_{j}=\boldsymbol{X} \boldsymbol{\tau}_{j}+\boldsymbol{Z}_{v} \boldsymbol{u}_{v_{j}}+\boldsymbol{Z}_{r} \boldsymbol{u}_{r_{j}}+\boldsymbol{e}_{j} \quad(j=c, t) \tag{15.9}
\end{equation*}
$$

where $\boldsymbol{y}_{j}$ is a vector of length $n=132$ containing the sqrtroot values for variate $j$ ( $j=c$ for control and $j=t$ for treated), $\boldsymbol{\tau}_{j}$ corresponds to a constant term and $\boldsymbol{u}_{v_{j}}$ and $\boldsymbol{u}_{r_{j}}$ correspond to random variety and run effects. The design matrices are the same for both traits. The random effects and error are assumed to be independent Gaussian variables with zero means and variance structures $\operatorname{var}\left(\boldsymbol{u}_{v_{j}}\right)=\sigma_{v_{j}}^{2} \boldsymbol{I}_{44}, \operatorname{var}\left(\boldsymbol{u}_{r_{j}}\right)=\sigma_{r_{j}}^{2} \boldsymbol{I}_{66}$ and $\operatorname{var}\left(\boldsymbol{e}_{j}\right)=\sigma_{j}^{2} \boldsymbol{I}_{132}$. The bivariate model can be written as a direct extension of (15.9), namely

$$
\begin{equation*}
\boldsymbol{y}=\left(\boldsymbol{I}_{2} \otimes \boldsymbol{X}\right) \boldsymbol{\tau}+\left(\boldsymbol{I}_{2} \otimes \boldsymbol{Z}_{v}\right) \boldsymbol{u}_{v}+\left(\boldsymbol{I}_{2} \otimes \boldsymbol{Z}_{r}\right) \boldsymbol{u}_{r}+\boldsymbol{e}^{*} \tag{15.10}
\end{equation*}
$$

where $\boldsymbol{y}=\left(\boldsymbol{y}_{c}^{\prime}, \boldsymbol{y}_{t}^{\prime}\right)^{\prime}, \boldsymbol{u}_{v}=\left(\boldsymbol{u}_{v_{c}}^{\prime}, \boldsymbol{u}_{v_{t}}^{\prime}\right)^{\prime}, \boldsymbol{u}_{r}=\left(\boldsymbol{u}_{r_{c}}^{\prime}, \boldsymbol{u}_{r_{t}}^{\prime}\right)^{\prime}$ and $\boldsymbol{e}^{*}=\left(\boldsymbol{e}_{c}^{\prime}, \boldsymbol{e}_{t}^{\prime}\right)^{\prime}$.
There is an equivalence between the effects in this bivariate model and the univariate model of (15.7). The variety effects for each trait ( $\boldsymbol{u}_{v}$ in the bivariate model) are partitioned in (15.7) into variety main effects and tmt.variety interactions so that $\boldsymbol{u}_{v}=\mathbf{1}_{2} \otimes \boldsymbol{u}_{1}+\boldsymbol{u}_{2}$. There is a similar partitioning for the run effects and the errors (see table 15.9).

Table 15.9 Equivalence of random effects in bivariate and univariate analyses

| effects | bivariate <br> (model 15.10) | univariate <br> (model 15.7) |
| :--- | :---: | :---: |
| trait.variety | $\boldsymbol{u}_{v}$ | $\mathbf{1}_{2} \otimes \boldsymbol{u}_{1}+\boldsymbol{u}_{2}$ |
| trait.run | $\boldsymbol{u}_{r}$ | $\mathbf{1}_{2} \otimes \boldsymbol{u}_{3}+\boldsymbol{u}_{4}$ |
| trait.pair | $\boldsymbol{e}^{*}$ | $\mathbf{1}_{2} \otimes \boldsymbol{u}_{5}+\boldsymbol{e}$ |

In addition to the assumptions in the models for individual traits (15.9) the bivariate analysis involves the assumptions cov $\left(\boldsymbol{u}_{v_{c}}\right) \boldsymbol{u}_{v_{t}}^{\prime}=\sigma_{v_{c t}} \boldsymbol{I}_{44}, \operatorname{cov}\left(\boldsymbol{u}_{r_{c}}\right) \boldsymbol{u}_{r_{t}}^{\prime}=$ $\sigma_{r_{c t}} \boldsymbol{I}_{66}$ and $\operatorname{cov}\left(\boldsymbol{e}_{c}\right) \boldsymbol{e}_{t}^{\prime}=\sigma_{c t} \boldsymbol{I}_{132}$. Thus random effects and errors are correlated between traits. So, for example, the variance matrix for the variety effects for each trait is given by

$$
\operatorname{var}\left(\boldsymbol{u}_{v}\right)=\left[\begin{array}{cc}
\sigma_{v_{c}}^{2} & \sigma_{v_{c t}} \\
\sigma_{v_{c t}} & \sigma_{v_{t}}^{2}
\end{array}\right] \otimes \boldsymbol{I}_{44}
$$

This unstructured form for trait.variety in the bivariate analysis is equivalent to the variety main effect plus heterogeneous tmt.variety interaction variance structure (15.8) in the univariate analysis. Similarly the unstructured form for trait.run is equivalent to the run main effect plus heterogeneous tmt.run interaction variance structure. The unstructured form for the errors (trait.pair) in the bivariate analysis is equivalent to the pair plus heterogeneous error (tmt. pair) variance in the univariate analysis. This bivariate analysis is achieved in ASReml as follows, noting that the tmt factor here is equivalent to traits.

```
this is for the paired data
 id
 pair 132
 run 66
 variety 44 !A
 yc ye
ricem.asd !skip 1 !X syc !Y sye
sqrt(yc) sqrt(ye) ~ Trait !r Tr.variety Tr.run
12}
132 !S2==1
Tr 0 US 2.21 1.1 2.427
Tr.variety 2
2 0 US 1.401 1 1.477
4 4 0 0
```

```
Tr.run 2
2 0 US .79 .5 2.887
660}
predict variety
```

A portion of the output from this analysis is

| 7 LogL $=-343.220$ | $S 2=$ | 1.0000 |
| :--- | :--- | :--- |
| 8 LogL $=-343.220$ | $S 2=$ | 262 df |
| 262 df |  |  |


| Source | Model |  | Gamma | Component | Comp/SE | \% C |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Residual | UnStruct | 1 | 2.14373 | 2.14373 | 4.44 | 0 U |
| Residual | UnStruct | 1 | 0.987401 | 0.987401 | 2.59 | 0 U |
| Residual | UnStruct | 2 | 2.34751 | 2.34751 | 4.62 | 0 U |
| Tr.variety | UnStruct | 1 | 3.83959 | 3.83959 | 3.47 | 0 U |
| Tr.variety | UnStruct | 1 | 2.33394 | 2.33394 | 3.01 | 0 U |
| Tr.variety | UnStruct | 2 | 1.96173 | 1.96173 | 2.69 | 0 U |
| Tr.run | UnStruct | 1 | 1.70788 | 1.70788 | 2.62 | 0 U |
| Tr.run | UnStruct | 1 | 0.319145 | 0.319145 | 0.59 | 0 U |
| Tr.run | UnStruct | 2 | 2.54326 | 2.54326 | 3.20 | 0 U |

Covariance/Variance/Correlation Matrix UnStructured
2.1440 .4402
0.98742 .348
Covariance/Variance/Correlation Matrix UnStructured
$3.840 \quad 0.8504$
2.3341 .962
Covariance/Variance/Correlation Matrix UnStructured
$1.708 \quad 0.1531$
$0.3191 \quad 2.543$

The resultant REML log-likelihood is identical to that of the heterogeneous univariate analysis (column (b) of table 15.8). The estimated variance parameters are given in Table 15.10.

Table 15.10: Estimated variance parameters from bivariate analysis of bloodworm data

| source | control <br> variance | treated <br> variance | covariance |
| :--- | :---: | :---: | :---: |
|  |  |  |  |
| us(trait).variety | 3.84 | 1.96 | 2.33 |
| us(trait).run | 1.71 | 2.54 | 0.32 |
| us(trait).pair | 2.14 | 2.35 | 0.99 |

The predicted variety means in the .pvs file are used in the following section on interpretation of results. A portion of the file is presented below. There is a wide range in SED reflecting the imbalance of the variety concurrence within runs.

| run | Assuming Power transformation was (Y+ 0.000)~ 0.500 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | is ignored in the prediction (except where specifically included |  |  |  |  |  |
| Trait | variety | Power_value | Stand_Error | Ecode | Retransformed | approx_SE |
| sqrt (yc) | AliCombo | 14.9532 | 0.9181 | E | 223.5982 | 27.4571 |
| sqrt (ye) | AliCombo | 7.9941 | 0.7993 | E | 63.9054 | 12.7790 |
| sqrt (yc) | Bluebelle | 13.1033 | 0.9310 | E | 171.6969 | 24.3980 |
| sqrt (ye) | Bluebelle | 6.6299 | 0.8062 | E | 43.9559 | 10.6901 |
| sqrt (yc) | C22 | 16.6679 | 0.9181 | E | 277.8192 | 30.6057 |
| sqrt (ye) | C22 | 8.9543 | 0.7993 | E | 80.1798 | 14.3140 |
| . | - |  | . | . |  |  |
| sqrt (yc) | YRK1 | 15.1859 | 0.9549 | E | 230.6103 | 29.0012 |
| sqrt (ye) | YRK1 | 8.3356 | 0.8190 | E | 69.4817 | 13.6534 |
| sqrt (yc) | YRK3 | 13.3057 | 0.9549 | E | 177.0428 | 25.4106 |
| sqrt (ye) | YRK3 | 8.1133 | 0.8190 | E | 65.8264 | 13.2894 |
| SED: Over | 11 Standard | or of Differ | nce 1.215 |  |  |  |



Figure 15.9 BLUPs for treated for each variety plotted against BLUPs for control

## Interpretation of results

Recall that the researcher is interested in varietal tolerance to bloodworms. This could be defined in various ways. One option is to consider the regression implicit in the variance structure for the trait by variety effects. The variance structure can arise from a regression of treated variety effects on control effects, namely

$$
\boldsymbol{u}_{v_{t}}=\beta \boldsymbol{u}_{v_{c}}+\boldsymbol{\epsilon}
$$

where the slope $\beta=\sigma_{v_{c t}} / \sigma_{v_{c}}^{2}$. Tolerance can be defined in terms of the deviations from regression, $\boldsymbol{\epsilon}$. Varieties with large positive deviations have greatest tolerance to bloodworms. Note that this is similar to the researcher's original intentions except that the regression has been conducted at the genotypic rather than the phenotypic level. In Figure 15.9 the BLUPs for treated have been plotted against the BLUPs for control for each variety and the fitted regression line (slope $=0.61$ ) has been drawn. Varieties with large positive deviations from the regression line include YRK3, Calrose, HR19 and WC1403.


Figure 15.10: Estimated deviations from regression of treated on control for each variety plotted against estimate for control

An alternative definition of tolerance is the simple difference between treated and control BLUPs for each variety, namely $\boldsymbol{\delta}=\boldsymbol{u}_{v_{c}}-\boldsymbol{u}_{v_{t}}$. Unless $\beta=1$ the two measures $\boldsymbol{\epsilon}$ and $\boldsymbol{\delta}$ have very different interpretations. The key difference is that $\boldsymbol{\epsilon}$ is a measure which is independent of inherent vigour whereas $\boldsymbol{\delta}$ is not. To see this consider

$$
\begin{aligned}
\operatorname{cov}(\boldsymbol{\epsilon}) \boldsymbol{u}_{v_{c}}^{\prime} & =\operatorname{cov}\left(\boldsymbol{u}_{v_{t}}-\beta \boldsymbol{u}_{v_{c}}\right) \boldsymbol{u}_{v_{c}}^{\prime} \\
& =\left(\sigma_{v_{c t}}-\frac{\sigma_{v_{c t}}}{\sigma_{v_{c}}^{2}} \sigma_{v_{c}}^{2}\right) \boldsymbol{I}_{44} \\
& =\mathbf{0}
\end{aligned}
$$

whereas

$$
\begin{aligned}
\operatorname{cov}(\boldsymbol{\delta}) \boldsymbol{u}_{v_{c}}^{\prime} & =\operatorname{cov}\left(\boldsymbol{u}_{v_{c}}-\boldsymbol{u}_{v_{t}}\right) \boldsymbol{u}_{v_{c}}^{\prime} \\
& =\left(\sigma_{v_{c}}^{2}-\sigma_{v_{c t}}\right) \boldsymbol{I}_{44}
\end{aligned}
$$



Figure 15.11: Estimated difference between control and treated for each variety plotted against estimate for control

The independence of $\boldsymbol{\epsilon}$ and $\boldsymbol{u}_{v_{c}}$ and dependence between $\boldsymbol{\delta}$ and $\boldsymbol{u}_{v_{c}}$ is clearly illustrated in Figures 15.10 and 15.11. In this example the two measures have provided very different rankings of the varieties. The choice of tolerance measure depends on the aim of the experiment. In this experiment the aim was to identify tolerance which is independent of inherent vigour so the deviations from regression measure is preferred.

### 15.9 Balanced longitudinal data - Random coefficients and cubic smoothing splines - Oranges

We now illustrate the use of random coefficients and cubic smoothing splines for the analysis of balanced longitudinal data. The implementation of cubic smoothing splines in ASReml was originally based on the mixed model formulation presented by Verbyla et al. (1999). More recently the technology has been enhanced so that the user can specify knot points; in the original approach the knot points were taken to be the ordered set of unique values of the explanatory variable. The specification of knot points is particularly useful if the number of unique values in the explanatory variable is large, or if units are measured at different times.

The data we use was originally reported by Draper and Smith (1998, ex24N, p559) and has recently been reanalysed by Pinheiro and Bates (2000, p338). The data are displayed in Figure 15.12 and are the trunk circumferences (in millimetres) of each of 5 trees taken at 7 times. All trees were measured at the same time so that the data are balanced. The aim of the study is unclear, though, both previous analyses involved modelling the overall 'growth' curve, accounting for the obvious variation in both level and shape between trees. Pinheiro and Bates (2000) used a nonlinear mixed effects modelling approach, in which they modelled the growth curves by a three parameter logistic function of age, given by

$$
\begin{equation*}
y=\frac{\phi_{1}}{1+\exp \left[-\left(x-\phi_{2}\right) / \phi_{3}\right]} \tag{15.11}
\end{equation*}
$$

where $y$ is the trunk circumference, $x$ is the tree age in days since December 31 $1968, \phi_{1}$ is the asymptotic height, $\phi_{2}$ is the inflection point or the time at which the tree reaches $0.5 \phi_{1}, \phi_{3}$ is the time elapsed between trees reaching half and about $3 / 4$ of $\phi_{1}$.

The datafile consists of 5 columns viz, Tree, a factor with 5 levels, age, tree age in days since 31st December 1968, circ the trunk circumference and season. The last column season was added after noting that tree age spans several years and if


Figure 15.12 Trellis plot of trunk circumference for each tree
converted to day of year, measurements were taken in either Spring (April/May) or Autumn (September/October).

First we demonstrate the fitting of a cubic spline in ASReml by restricting the dataset to tree 1 only. The model includes the intercept and linear regression of trunk circumference on age and an additional random term spl (age,7) which instructs ASReml to include a random term with a special design matrix with $7-2=5$ columns which relate to the vector, $\boldsymbol{\delta}$ whose elements $\delta_{i}, i=2, \ldots, 6$ are the second differentials of the cubic spline at the knot points. The second differentials of a natural cubic spline are zero at the first and last knot points (Green and Silverman, 1994). The ASReml job is

```
this is the orange data, for tree 1
 seq # record number is not used
 Tree 5
 age # 118 484 664 1004 1231 1372 1582
 circ
 season !L Spring Autumn
orange.asd !skip 1 !filter 2 !select 1
!SPLINE spl(age,7)}118\quad484 664 1004 1231 1372 158
!PVAL age 150 200:1500
circ ~ mu age !r spl(age,7)
predict age
```

Note that the data for tree 1 has been selected by use of the !filter and !select qualifiers. Also note the use of !PVAL so that the spline curve is properly predicted at the additional nominated points. These additional data points are required for ASReml to form the design matrix to properly interpolate the cubic smoothing spline between knot points in the prediction process. Since the spline knot points are specifically nominated in the !SPLINE line, these extra points have no effect on the analysis run time. The !SPLINE line does not modify the analysis in this example since it simply nominates the 7 ages in the data file. The same analysis would result if the !SPLINE line was omitted and spl (age,7) in the model was replaced with spl (age). An extract of the output file is

| 1 LogL=-20.9043 | $\mathrm{S} 2=$ | 48.470 | 5 df | 0.1000 | 1.000 |
| ---: | :--- | ---: | :--- | :--- | :--- | :--- |
| 2 LogL=-20.9017 | $\mathrm{S} 2=$ | 49.022 | 5 df | $0.9266 \mathrm{E}-01$ | 1.000 |
| 3 LogL=-20.8999 | $\mathrm{S} 2=$ | 49.774 | 5 df | $0.8356 \mathrm{E}-01$ | 1.000 |
| 4 LogL=-20.8996 | $\mathrm{S} 2=$ | 50.148 | 5 df | $0.7937 \mathrm{E}-01$ | 1.000 |
| 5 LogL=-20.8996 | $\mathrm{S} 2=$ | 50.213 | 5 df | $0.7866 \mathrm{E}-01$ | 1.000 |
| Final parameter values |  | $0.78798 \mathrm{E}-01$ | 1.0000 |  |  |



The REML estimate of the smoothing constant indicates that there is some nonlinearity. The fitted cubic smoothing spline is presented in Figure 15.13. The fitted values were obtained from the .pvs file. The four points below the line were the spring measurements.


Figure 15.13 Fitted cubic smoothing spline for tree 1

We now consider the analysis of the full dataset. Following Verbyla et al. (1999) we consider the analysis of variance decomposition (see Table 15.11) which models the overall and individual curves.

An overall spline is fitted as well as tree deviation splines. We note however, that the intercept and slope for the tree deviation splines are assumed to be random effects. This is consistent with Verbyla et al. (1999). In this sense the tree deviation splines play a role in modelling the conditional curves for each tree and variance modelling. The intercept and slope for each tree are included as random coefficients (denoted by RC in Table 15.11). Thus, if $\boldsymbol{U}^{5 \times 2}$ is the matrix of intercepts (column 1) and slopes (column 2) for each tree, then we assume that

$$
\operatorname{var}(\operatorname{vec}(\boldsymbol{U}))=\boldsymbol{\Sigma} \otimes \boldsymbol{I}_{5}
$$

where $\boldsymbol{\Sigma}$ is a $2 \times 2$ symmetric positive definite matrix. Non smooth variation can be modelled at the overall mean (across trees) level and this is achieved in ASReml by inclusion of $f a c$ (age) as a random term.

Table 15.11 Orange data: AOV decomposition

| stratum | decomposition | type | df or ne |
| :--- | :--- | :---: | ---: |
| constant | 1 | F | 1 |
| age |  |  |  |
|  | age | F | 1 |
|  | spl(age,7) | R | 5 |
|  | fac(age) | R | 7 |
| tree |  | RC | 5 |
|  | tree | RC | 5 |
| age.tree |  | R | 25 |
|  | x.tree | R |  |
| error | spl(age,7).tree |  |  |

An extract of the ASReml input file is

```
circ ~ mu age !r Tree 4.6 Tree.age .000094 spl(age,7) .1,
spl(age,7).Tree 2.3 fac(age) 13.9
0 0 1
Tree 2
2 0 US 4.6 .00001 .000094
50}
predict age Tree !IGNORE fac(age)
```

We stress the importance of model building in these settings, where we generally commence with relatively simple variance models and update to more complex variance models if appropriate. Table 15.12 presents the sequence of fitted models we have used. Note that the REML log-likelihoods for models 1 and 2 are comparable and likewise for models 3 to 6 . The REML log-likelihoods are not comparable between these groups due to the inclusion of the fixed season term in the second set of models.

We begin by modelling the variance matrix for the intercept and slope for each tree, $\boldsymbol{\Sigma}$, as a diagonal matrix as there is no point including a covariance component between the intercept and slope if the variance component(s) for one (or both) is zero. Model 1 also does not include a non-smooth component at the overall level (that is, fac(age)). Abbreviated output is shown below.

Table 15.12 Sequence of models fitted to the Orange data


A quick look suggests this is fine until we look at the predicted curves in Figure 15.14. The fit is unacceptable because the spline has picked up too much curvature, and suggests that there may be systematic non-smooth variation at the overall level. This can be formally examined by including the fac (age) term as a random effect. This increased the $\log$-likelihood 3.71 ( $\mathrm{P}<0.05$ ) with the $\mathrm{spl}(\mathrm{age}, 7)$ smoothing constants heading to the boundary. There is a possible explanation in the season factor. When this is added (Model 3) it has an F ratio of 107.5 ( $\mathrm{P}<0.01$ ) while the fac (age) term goes to the boundry. Notice that the inclusion of the fixed term season in models 3 to 6 means that comparisons with models 1 and 2 on the basis of the log-likelihood are not valid. The spring


Figure 15.14 Plot of fitted cubic smoothing spline for model 1
measurements are lower than the autumn measurements so growth is slower in winter. Models 4 and 5 successively examined each term, indicating that both smoothing constants are significant ( $\mathrm{P}<0.05$ ). Lastly we add the covariance parameter between the intercept and slope for each tree in model 6 . This ensures that the covariance model will be translation invariant. A portion of the output file for model 6 is
$8 \operatorname{LogL}=-87.4291 \quad \mathrm{~S} 2=5.6303 \quad 32 \mathrm{df}$



Figure 15.15: Trellis plot of trunk circumference for each tree at sample dates (adjusted for season effects), with fitted profiles across time and confidence intervals

Figure 15.15 presents the predicted growth over time for individual trees and a marginal prediction for trees with approximate confidence intervals ( $2 \pm \times$ standard error of prediction). Within this figure, the data is adjusted to remove the estimated seasonal effect. The conclusions from this analysis are quite different from those obtained by the nonlinear mixed effects analysis. The individual curves for each tree are not convincingly modelled by a logistic function. Figure 15.16 presents a plot of the residuals from the nonlinear model fitted on p340 of Pinheiro and Bates (2000). The distinct pattern in the residuals, which is the same for all trees is taken up in our analysis by the season term.


Figure 15.16 Plot of the residuals from the nonlinear model of Pinheiro and Bates

### 15.10 Multivariate animal genetics data - Sheep

The analysis of incomplete or unbalanced multivariate data often presents computational difficulties. These difficulties are exacerbated by either the number of random effects in the linear mixed model, the number of traits, the complexity of the variance models being fitted to the random effects or the size of the problem. In this section we illustrate two approaches to the analysis of a complex set of incomplete multivariate data.

Much of the difficulty in conducting such analyses in ASReml centres on obtaining good starting values. Derivative based algorithms such as the AI algorithm can be unreliable when fitting complex variance structures unless good starting values are available. Poor starting values may result in divergence of the algorithm or slow convergence. A particular problem with fitting unstructured variance models is keeping the estimated variance matrix positive definite. These are not simple issues and in the following we present a pragmatic approach to them.

The data are taken from a large genetic study on Coopworth lambs. A total of 5 traits, namely weaning weight (wwt), yearling weight (ywt), greasy fleece weight (gfw), fibre diameter (fdm) and ultrasound fat depth at the C site (fat) were measured on 7043 lambs. The lambs were the progeny of 92 sires and 3561 dams, produced from 4871 litters over 49 flock-year combinations. Not all traits were measured on each group. No pedigree data was available for either sires or dams.

The aim of the analysis is to estimate heritability $\left(h^{2}\right)$ of each trait and to estimate the genetic correlations between the five traits. We will present two approaches, a half-sib analysis and an analysis based on the use of an animal model, which directly defines the genetic covariance between the progeny and sires and dams.

The data fields included factors defining sire, dam and lamb (tag), covariates such as age, the age of the lamb at a set time, brr the birth rearing rank ( $1=$ born single raised single, $2=$ born twin raised single, $3=$ born twin raised twin and 4 $=$ other $)$, sex ( $\mathrm{M}, \mathrm{F}$ ) and grp a factor indicating the flock-year combination.

## Half-sib analysis

In the half-sib analysis we include terms for the random effects of sires, dams and litters. In univariate analyses the variance component for sires is denoted by $\sigma_{s}^{2}=\frac{1}{4} \sigma_{A}^{2}$ where $\sigma_{A}^{2}$ is the additive genetic variance, the variance component for dams is denoted by $\sigma_{d}^{2}=\frac{1}{4} \sigma_{A}^{2}+\sigma_{m}^{2}$ where $\sigma_{m}^{2}$ is the maternal variance component and the variance component for litters is denoted by $\sigma_{l}^{2}$ and represents variation attributable to the particular mating.

For a multivariate analysis these variance components for sires, dams and litters are, in theory replaced by unstructured matrices, one for each term. Additionally we assume the residuals for each trait may be correlated. Thus for this example we would like to fit a total of 4 unstructured variance models. For such a situation, it is sensible to commence the modelling process with a series of univariate analyses. These give starting values for the diagonals of the variance matrices, but also indicate what variance components are estimable. The ASReml job for the univariate analyses is

```
Multivariate Sire & Dam model
 tag
 sire 92!I
 dam 3561 !I
 grp 49
 sex
 brr 4
 litter 4871
```

Table 15.13: REML estimates of a subset of the variance parameters for each trait for the genetic example, expressed as a ratio to their asymptotic s.e.

| term | wwt | ywt | gfw | fdm | fat |
| ---: | :---: | :---: | :---: | :---: | :---: |
| sire | 3.68 | 3.57 | 3.95 | 1.92 | 1.92 |
| dam | 6.25 | 4.93 | 2.78 | 0.37 | 0.05 |
| litter | 8.79 | 0.99 | 2.23 | 1.91 | 0.00 |
| age.grp | 2.29 | 1.39 | 0.31 | 1.15 | 1.74 |
| sex.grp | 2.90 | 3.43 | 3.70 | - | 1.83 |

Table 15.14 Wald tests of the fixed effects for each trait for the genetic example

| term | wwt | ywt | gfw | fdm | fat |
| ---: | :--- | :--- | :--- | :--- | :--- |
| age | 331.3 | 67.1 | 52.4 | 2.6 | 7.5 |
| brr | 554.6 | 73.4 | 14.9 | 0.3 | 13.9 |
| sex | 196.1 | 123.3 | 0.2 | 2.9 | 0.6 |
| age.sex | 10.3 | 1.7 | 1.9 | - | 5.0 |

```
 age wwt !MO ywt !MO # !MO recodes zeros as missing values
 gfw !MO fdm !MO fat !MO
coop.fmt
wwt ~ mu age brr sex age.sex !r sire dam lit age.grp sex.grp !f grp
```

Tables 15.13 and 15.14 present the summary of these analyses. Fibre diameter was measured on only 2 female lambs and so interactions with sex were not fitted. The dam variance component was quite small for both fibre diameter and fat. The REML estimate of the variance component associated with litters was effectively zero for fat.

Thus in the multivariate analysis we consider fitting the following models to the sire, dam and litter effects,

$$
\operatorname{var}\left(\boldsymbol{u}_{s}\right)=\boldsymbol{\Sigma}_{s} \otimes \boldsymbol{I}_{92}
$$

$$
\begin{aligned}
\operatorname{var}\left(\boldsymbol{u}_{d}\right) & =\boldsymbol{\Sigma}_{d} \otimes \boldsymbol{I}_{3561} \\
\operatorname{var}\left(\boldsymbol{u}_{l}\right) & =\boldsymbol{\Sigma}_{l} \otimes \boldsymbol{I}_{4891}
\end{aligned}
$$

where $\boldsymbol{\Sigma}_{s}^{5 \times 5}, \boldsymbol{\Sigma}_{d}^{3 \times 3}$ and $\boldsymbol{\Sigma}_{l}^{4 \times 4}$ are positive definite symmetric matrices corresponding to the between traits variance matrices for sires, dams and litters respectively. The variance matrix for dams does not involve fibre diameter and fat depth, while the variance matrix for litters does not involve fat depth. The effects in each of the above vectors are ordered levels within traits. Lastly we assume that the residual variance matrix is given by

$$
\boldsymbol{\Sigma}_{e} \otimes \boldsymbol{I}_{7043}
$$

Table 15.15 presents the sequence variance models fitted to each of the four random terms sire, dam, litter and error in the ASReml job

```
Multivariate Sire & Dam model
 tag
 sire 92 !I
 dam 3561 !I
 grp 49
 sex
 brr 4
 litter 4871
 age wwt !m0 ywt !m0 # !M0 identifies missing values
 gfw !m0 fdm !m0 fat !m0
coop.fmt !DOPATH $1 !CONTINUE !MAXIT 20
!PATH 3
 !EXTRA 4
!PATH
wwt ywt gfw fdm fat ~ Trait Tr.age Tr.brr Tr.sex Tr.age.sex,
 !r Tr.sire,
 !{ at(Tr,1).dam at(Tr,2).dam at(Tr,3).dam !},
 !{ at(Tr,1).lit at(Tr,2).lit at(Tr,3).lit at(Tr,4).lit !},
 at(Trait,1).age.grp .0024,
 at(Trait,2).age.grp .0019,
 at(Trait,4).age.grp .0020,
 at(Trait,5).age.grp .00026,
 at(Trait,1).sex.grp .93,
 at(Trait,2).sex.grp 16.0,
 at(Trait,3).sex.grp .28,
 at(Trait,5).sex.grp 1.18,
 !f Tr.grp
123 #1 R structure with 2 dimensions and 3 G structures
000 #Independent across animals
Tr 0 US #General structure across traits
```

```
15*0. #Asreml will estimate some starting values
Tr.sire 2 #Sire effects.
!PATH 1 #Initial analysis ignoring genetic correlations
Tr O DIAG #Specified diagonal variance structure
0.608 1.298 0.015 0.197 0.035 #Initial sire variances
!PATH 2 #Factor Analytic model
Tr 0 FA1 !GP
 0.5 0.5 -.01 -.01 0.1 #Correlation factors
0.608 1.298 0.015 0.197 0.035 #Variances
!PATH 3 #Unstructured variance model
Tr O US
0.6199 #Lower triangle row-wise
 0.6939 1.602
 0.003219 0.007424 0.01509
-0.02532 -0.05840-0.0002709 0.1807
 0.06013 0.1387 0.0006433-0.005061 0.03487
!PATH
sire
#Maternal structure covers the 3 model terms
#
 at(Tr,1).dam at(Tr,2).dam at(Tr,3).dam
at(Tr,1).dam 2 # Maternal effects.
!PATH 1
3 0 CORGH !GU # Equivalent to Unstructured
. }
.1.1
2.2 4.14 0.018
!PATH 2
3 O CORGH !GU
.9
.1.1
2.2 4.14 0.018
!PATH 3
3 US !GU
. }
.1 . }
2.24.14 0.018
!PATH
dam
#Litter structure covers the 4 model terms at(Tr,1).lit at(Tr,2).lit
#at(Tr,3).lit at(Tr,4).lit
at(Tr,1).lit 2 # Litter effects.
!PATH 1
4 ~ 0 ~ D I A G ~ \# ~ D i a g o n a l ~ s t r u c t u r e ~
```

```
3.74 0.97 0.019 0.941
!PATH 2
4 FA1 !GP # Factor Analytic 1
.5 . 5 . 01 . }
4.95 4.63 0.037 0.941
!PATH 3
4 US # Unstructured
 5.073
 3.545 3.914
 0.1274 0.08909 0.02865
 0.07277 0.05090 0.001829 1.019
!PATH
lit
```

Table 15.15: Variance models fitted for each part of the ASReml job in the analysis of the genetic example

| term | matrix | !PATH 1 | !PATH 2 | !PATH 3 |
| ---: | :--- | :--- | :--- | :--- |
|  |  |  |  |  |
| sire | $\boldsymbol{\Sigma}_{s}$ | DIAG | FA1 | US |
| dam | $\boldsymbol{\Sigma}_{d}$ | CORGH | CORGH | US |
| litter | $\boldsymbol{\Sigma}_{l}$ | DIAG | FA1 | US |
| error | $\boldsymbol{\Sigma}_{e}$ | US | US | US |

In !PATH 1, the error variance model is taken to be unstructured, but the starting values are set to zero. This instructs ASReml to obtain starting values from the sample covariance matrix of the data. For incomplete data the matrix so obtained may not, in general be positive definite. Care should be taken when using this option for incomplete multivariate data. The command to run !PATH 1 is

```
asreml -nrw64 mt 1
```

The Loglikelihood from this run is $-20000-1444.93$. When the job runs, the message

Non positive definite G matrix: 0 singularities 1 negative pivots; order 3
appears to the screen. This refers to the $3 \times 3$ dam matrix which is estimated as

| Covariance/Variance/Correlation Matrix CORRelation |  |  |  |
| ---: | :---: | :--- | :---: |
| 2.573 | 1.025 | 0.6568 |  |
| 3.024 | 3.382 | 0.7830 |  |
| 0.1526 | 0.2086 | $0.2098 \mathrm{E}-01$ |  |

Note the correlation between wwt and ywt is estimated at 1.025.

The results from this analysis can be automatically used by ASReml for the next part, if the .rsv is copied prior to running the next part. That is, we add the !PATH 2 coding to the job, copy mt1.rsv to mt2.rsv so that when we run !PATH 2 it starts from where ! PATH 1 finished, and run the job using
asreml -cnrw64 mt 2

The Loglikelihood from this run is $-20000-1427.37$.

Finally, we use the ! PATH 3 coding to obtain the final analysis, copy mt2.rsv to mt3.rsv and run the final stage starting from the stage 2 results. Note that we are using the automatic updating associated with ! CONTINUE. A portion of the final output file is

| Notice: LogL values are reported relative to a base of $-20000.00$ <br> NOTICE: 76 singularities detected in design matrix. |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |
| $1 \mathrm{LogL=-1427.37}$ | S2= | 1.0000 | 35006 df | : 2 components | constr | ed |
| 2 LogL=-1424.58 | S2= | 1.0000 | 35006 df |  |  |  |
| $3 \mathrm{LogL=-1421.07}$ | S2= | 1.0000 | 35006 df | 1 components | constr |  |
| $4 \mathrm{LogL=-1420.11}$ | S2= | 1.0000 | 35006 df |  |  |  |
| $5 \mathrm{LogL=-1419.93}$ | S2= | 1.0000 | 35006 df |  |  |  |
| $6 \mathrm{LogL=-1419.92}$ | S2= | 1.0000 | 35006 df |  |  |  |
| $7 \mathrm{LogL=}=1419.92$ | S2= | 1.0000 | 35006 df |  |  |  |
| $8 \mathrm{LogL=-1419.92}$ | S2= | 1.0000 | 35006 df |  |  |  |
| $9 \mathrm{LogL=-1419.92}$ | S2= | 1.0000 | 35006 df |  |  |  |
| 10 LogL=-1419.92 | S2= | 1.0000 | 35006 df |  |  |  |
| 11 LogL=-1419.92 | S2= | 1.0000 | 35006 df |  |  |  |
| Source | Model | terms | Gamma | Component | Comp/SE | \% C |
| at (Trait, 1) .age.grp | 49 | 49 | 0.135360E-02 | $0.135360 \mathrm{E}-02$ | 2.03 | 0 P |
| at (Trait, 2) .age.grp | 49 | 49 | 0.101561E-02 | $0.101561 \mathrm{E}-02$ | 21.24 | 0 P |
| at(Trait,4).age.grp | 49 | 49 | 0.176505E-02 | $0.176505 \mathrm{E}-02$ | 1.13 | 0 P |
| at (Trait,5).age.grp | 49 | 49 | 0.209279E-03 | $0.209279 \mathrm{E}-03$ | 1.68 | 0 P |
| at(Trait,1).sex.grp | 49 | 49 | 0.919610 | 0.919610 | 2.89 | 0 P |
| at (Trait, 2) . sex.grp | 49 | 49 | 15.3912 | 15.3912 | 3.50 | 0 P |
| at (Trait, 3) . sex.grp | 49 | 49 | 0.279496 | 0.279496 | 3.71 | 0 P |
| at (Trait,5).sex.grp | 49 | 49 | 1.44032 | 1.44032 | 1.80 | 0 P |
| Residual | UnStru | 11 | 9.46220 | 9.46220 | 33.30 | 0 U |



In the .res file is reported an eigen analysis of these four variance structures.

| Eigen Analysis of UnStructured matrix for Residual |  |  |  |  |  |
| :---: | :---: | ---: | ---: | ---: | ---: |
| Eigen values | 22.458 | 5.210 | 3.395 | 1.160 | 0.103 |
| Percentage | 69.474 | 16.118 | 10.502 | 3.588 | 0.318 |
| 1 | 0.4970 | -0.8663 | 0.0141 | 0.0470 | 0.0027 |
| 2 | 0.8509 | 0.4765 | -0.1316 | -0.1746 | -0.0327 |
| 3 | 0.0335 | 0.0230 | 0.0585 | -0.0048 | 0.9974 |
| 4 | 0.1168 | 0.0871 | 0.9843 | 0.0769 | -0.0633 |
| 5 | 0.1187 | 0.1196 | -0.1010 | 0.9805 | 0.0039 |


| Eigen Analysis of UnStructured matrix for | Tr.sire |  |  |  |  |
| :---: | ---: | ---: | ---: | ---: | ---: |
| Eigen values | 1.904 | 0.304 | 0.114 | 0.013 | 0.010 |
| Percentage | 81.199 | 12.963 | 4.859 | 0.535 | 0.444 |
| 1 | 0.4578 | 0.7476 | 0.4695 | -0.1052 | 0.0087 |
| 2 | 0.8860 | -0.3646 | -0.2766 | 0.0248 | -0.0700 |
| 3 | 0.0077 | 0.0798 | 0.0826 | 0.9438 | -0.3098 |
| 4 | -0.0163 | 0.5260 | -0.8015 | 0.1116 | 0.2612 |
| 5 | 0.0710 | -0.1587 | 0.2320 | 0.2918 | 0.9115 |

Eigen Analysis of UnStructured matrix for at $(\operatorname{Tr}, 1)$.dam

| Eigen values | 4.382 | 0.010 | -0.025 |
| :---: | ---: | ---: | ---: |
| Percentage | 100.352 | 0.225 | -0.577 |
| 1 | 0.7041 | -0.2321 | 0.6711 |
| 2 | 0.7081 | 0.1585 | -0.6881 |
| 3 | 0.0533 | 0.9597 | 0.2760 |


| Eigen Analysis of UnStructured matrix for | at (Tr,1).lit |  |  |  |
| :---: | ---: | ---: | ---: | ---: |
| Eigen values | 4.795 | 1.827 | 0.482 | 0.016 |
| Percentage | 67.345 | 25.664 | 6.769 | 0.221 |
| 1 | 0.7752 | 0.5928 | 0.2178 | 0.0133 |
| 2 | 0.6159 | -0.6328 | -0.4691 | -0.0106 |
| 3 | 0.0016 | -0.0340 | 0.0255 | 0.9991 |
| 4 | -0.1403 | 0.4969 | -0.8555 | 0.0390 |

The REML estimates of all the variance matrices except for the dam components are positive definite. Heritabilities for each trait can be calculated using the .pin file facility of ASRemI. The heritability is given by

$$
h^{2}=\frac{\sigma_{A}^{2}}{\sigma_{P}^{2}}
$$

where $\sigma_{P}^{2}$ is the phenotypic variance and is given by

$$
\sigma_{P}^{2}=\sigma_{s}^{2}+\sigma_{d}^{2}+\sigma_{l}^{2}+\sigma_{e}^{2}
$$

recalling that

$$
\begin{aligned}
\sigma_{s}^{2} & =\frac{1}{4} \sigma_{A}^{2} \\
\sigma_{d}^{2} & =\frac{1}{4} \sigma_{A}^{2}+\sigma_{m}^{2}
\end{aligned}
$$

In the half-sib analysis we only use the estimate of additive genetic variance from the sire variance component. The ASReml .pin file is presented below along with the output from the following command

```
asreml -p mt3
F phenWYG 9:14 + 24:29 + 39:44 + 45:50 # defines 55:60
F phenD 15:18 + 30:33 + 51:54 # defines 61:64
F phenF 19:23 + 34:38 # defines 65:69
F Direct 24:38 * 4. # defines 70:84
F Maternal 39:44 - 24:29 # defines 85:90
H WWTh2 70 55
H YWTh2 72 57
H GFWh2 75 60
H FDMh2 79 64
H FATh2 }846
R GenCor 24:38
R MatCor 85:90
```

| 55 phenWYG 9 | 15.76 | 0.3130 |
| :---: | :---: | :---: |
| 56 phenWYG 10 | 11.76 | 0.3749 |
| 57 phenWYG 11 | 23.92 | 0.6313 |
|  |  |  |
| 70 Direct 24 | 2.376 | 0.6458 |
| 71 Direct 25 | 2.698 | 0.8487 |
| 72 Direct 26 | 6.174 | 1.585 |
| 73 Direct 27 | 0.1120 | $0.7330 \mathrm{E}-01$ |
| - . . |  |  |
| 85 Maternal 39 | 1.567 | 0.3788 |
| 86 Maternal 40 | 1.521 | 0.4368 |
| 87 Maternal 41 | 0.6419 | 0.7797 |



## Animal model

In this section we will illustrate the use of .ped files to define the genetic pedigree structure between animals. This is an alternate method of estimating additive genetic variance for these data. The variance matrix of the animals (sires, dams and lambs) for which we only have data on lambs is given by

$$
\operatorname{var}\left(\boldsymbol{u}_{A}\right)=\boldsymbol{\Sigma}_{A} \otimes \boldsymbol{A}^{-1}
$$

where $\boldsymbol{A}^{-1}$ is the inverse of the genetic relationship matrix. There are a total of $10696=92+3561+7043$ animals in the pedigree. The ASReml input file is presented below. Note that this model is not equivalent to the sire/dam/litter model with respect to the animal/litter components for gfw, fd and fat.

```
Multivariate Animal model
 tag !P
 sire
 dam !P
 grp
 sex
 brr 4
 litter 4871
 age wwt !m0 ywt !m0 # !MO identifies missing values
 gfw !m0 fdm !m0 fat !m0
coop.fmt # read pedigree from first three fields
coop.fmt !DOPATH $1 !CONTINUE !MAXIT 20 !STEP 0.01
 # $1 allows selection of PATH as a command line argument
!PATH 3
 !EXTRA 4 # Force 4 more iterations after convergence criterion met
!PATH
wwt ywt gfw fdm fat ~ Trait Tr.age Tr.brr Tr.sex Tr.age.sex,
 !r Tr.tag ,
 at(Tr,1).dam, at(Tr,2).dam, -at(Tr,3).dam .003,
 at(Tr,1).lit, at(Tr,2).lit, at(Tr,3).lit, at(Tr,4).lit,
 at(Trait,1).age.grp .0024,
 at(Trait,2).age.grp .0019,
 at(Trait,4).age.grp .0020,
 at(Trait,5).age.grp .00026,
 at(Trait,1).sex.grp .93,
 at(Trait,2).sex.grp 16.0,
 at(Trait,3).sex.grp . 28,
 at(Trait,5).sex.grp 1.18,
 !f Tr.grp
123 # One multivariate R structure, 3 G structures
0 0 0 # No structure across lamb records
 # First zero lets ASReml count te number of records
Tr 0 US #General structure across traits
7.66
```

```
5.33 13
. 18 . }66 . 1
. }782.1 . 27 3.
. }732.02 .08 . 20 1.4
Tr.tag 2 # Direct animal effects.
!PATH 2
Tr 0 FA1 !GP
 0.5 0.5 -. 01 -. 01 0.1
2.4 5.2 0.06 . . . 14
!PATH 3
Tr O US
2.4800
 2.8 6.4
0.0128 0.03 0.06
-. 1-. 22 -. .0011 0.72
 0.24 0.55 0.0026 -0.0202 0.14
!PATH
tag
at(Tr,1).dam 2 # Maternal effects.
!PATH 2
O CORGH !GFU
.99
1.6 2.54
!PATH 3
O US !GU
1.1 . 58 . 31
!PATH
dam
```

```
at(Tr,1).lit 2 # Litter effects.
```

at(Tr,1).lit 2 \# Litter effects.
!PATH 2
4 FA1 !GP \# Factor Analytic
5 . 5 . 01 . 1 . 01
4.95 4.63 0.037 0.941 0.102
!PATH 3

| 4 O US |  | \# Unstructured |
| :---: | :---: | :---: |
| 5.073 |  |  |
| 3.545 | 3.914 |  |
| 0.1274 | 0.08909 | 0.02865 |
| 0.07277 | 0.05090 | 0.001829 |
| 1.019 |  |  |

!PATH
lit

```

The term Tr.tag now replaces the sire (and part of dam) terms in the half-sib analysis. This analysis uses information from both sires and dams to estimate
additive genetic variance. The dam variance component is this analysis only estimates the maternal variance component. It is only significant for the weaning and yearling weights. The litter variation remains unchanged. The ASReml input file again consists of several parts, which progressively build up to fitting unstructured variance models to Tr . \(\mathrm{tag}, \mathrm{Tr}\). dam, Tr . litter and error. A portion of the output file is

\begin{tabular}{|c|c|c|c|c|c|}
\hline at (Trait, 1) . sex.grp & \(49 \quad 49\) & 490.902586 & 0.902586 & 2.88 & 0 P \\
\hline at (Trait, 2).sex.grp & 4949 & \(49 \quad 15.3623\) & 15.3623 & 3.50 & 0 P \\
\hline at (Trait, 3).sex.grp & 4949 & 490.280673 & 0.280673 & 3.71 & 0 P \\
\hline at(Trait,5).sex.grp & 4949 & 491.42136 & 1.42136 & 1.80 & 0 P \\
\hline Residual & UnStru 1 & 17.47555 & 7.47555 & 13.86 & 0 U \\
\hline : & & & & & \\
\hline \multicolumn{6}{|l|}{Covariance/Variance/Correlation Matrix UnStructured Residual} \\
\hline 7.4760 .4918 & 0.1339 0 & 0.1875 & & & \\
\hline \(4.768 \quad 12.57\) & 0.4381 & 0.3425 & & & \\
\hline \(0.1189 \quad 0.5049\) & 0.1056 & 0.4864 & & & \\
\hline \(0.9377 \quad 2.221\) & 0.2891 & 3.345 & & & \\
\hline 0.42081 .612 & \(0.4869 \mathrm{E}-010\) & 0.2473 & & & \\
\hline \multicolumn{6}{|l|}{Covariance/Variance/Correlation Matrix UnStructured Tr.tag} \\
\hline 3.898 0.8164 & 0.57630 & 0.3899E-01 0 & & & \\
\hline \(4.877 \quad 9.154\) & \(0.3689-0\) & -0.1849 & & & \\
\hline \(0.3029 \quad 0.2971\) & \(0.7085 \mathrm{E}-01-0\) & -0.2415E-01 0 & & & \\
\hline \(0.6021 \mathrm{E}-01-0.4375\) & -0.5027E-02 0 & \(0.6117-0\) & & & \\
\hline 0.61541 .107 & 0.4104E-01-0 & -0.1853 & & & \\
\hline \multicolumn{6}{|l|}{Covariance/Variance/Correlation Matrix UnStructured at (Tr,1).dam} \\
\hline \multicolumn{6}{|l|}{\(0.5881-0.7018\)} \\
\hline \multicolumn{6}{|l|}{Covariance/Variance/Correlation Matrix UnStructured at (Tr,1).lit} \\
\hline \(3.714 \quad 0.5511\) & \(0.1635-0\) & -0.6157E-01 & & & \\
\hline \(2.019 \quad 3.614\) & \(0.5176-0\) & -0.4380 & & & \\
\hline \(0.4506 \mathrm{E}-010.1407\) & 0.2045E-01-0. & -0.3338 & & & \\
\hline -0.1021 -0.7166 & -0.4108E-01 0 & 0.7407 & & & \\
\hline Analysis of Variance & & NumDF & F_inc & & \\
\hline 15 Tr .age & & 5 & 99.16 & & \\
\hline \(16 \mathrm{Tr} . \mathrm{brr}\) & & 15 & 116.52 & & \\
\hline 17 Tr . sex & & 5 & 59.94 & & \\
\hline 19 Tr .age.sex & & 4 & 5.10 & & \\
\hline
\end{tabular}

There is no guarantee that unstructured variance component matrices will be positive definite unless ! GP qualifier is set. This example highlights this issue. We used the !GU qualifier on the maternal component to obtain the matrix
\[
\left[\begin{array}{ll}
0.9988 & 0.5881 \\
0.5881 & -0.7018
\end{array}\right] .
\]

ASReml reports the correlation as 0.7024 which it obtains by ignoring the sign in -0.7018 . This is the maternal component for ywt. Since it is entirely reasonable to expect maternal influences on growth to have dissipated at 12 months of age, it would be reasonable to refit the model omitting at \((\mathrm{Tr}, 2)\).dam and changing the dimension of the G structure.

\section*{Bibliography}

Abramowitz, M. and Stegun, I. A. (eds) (1965). Handbook of Mathematical Functions, Dover Publications, New York.

Breslow, N. (2003). Whither PQL?, Technical Report 192, UW Biostatistics Working Paper Series, University of Washington.

Breslow, N. and Lin, X. (1995). Bias correction in generalised linear mixed models with a single component of dispersion, Biometrika 82: 81-91.

Breslow, N. E. and Clayton, D. G. (1993). Approximate inference in generalized linear mixed models, Journal of the American Statistical Association 88: 925.

Browne, W. and Draper, D. (2004). A comparison of bayesian and likelihoodbased methods for fitting multilevel models, Research Report 04-01, Nottingham Statistics Research Report 04-01.

Butler, D. G., Cullis, B. R., Gilmour, A. R. and Gogel, B. J. (2007). Analysis of mixed models for S language environments. ASReml-R reference manual, Technical report, Queensland Department of Primary Industries.

Callens, M. and Croux, C. (2005). Performance of likelihood-based estimation methods for multilevel binary regression models, Technical report, Dept. of Applied Economics, Katholieke Universiteit Leuven.

Cox, D. R. and Hinkley, D. V. (1974). Theoretical Statistics, London: Chapman and Hall.

Cox, D. R. and Snell, E. J. (1981). Applied Statistics; Principles and Examples, London: Chapman and Hall.

Cressie, N. A. C. (1991). Statistics for spatial data, New York: John Wiley and Sons, Inc.

Cullis, B. R. and Gleeson, A. C. (1991). Spatial analysis of field experiments an extension to two dimensions, Biometrics 47: 1449-1460.

Cullis, B. R., Gleeson, A. C., Lill, W. J., Fisher, J. A. and Read, B. J. (1989). A new procedure for the analysis of early generation variety trials, Applied Statistics 38: 361-375.

Cullis, B. R., Gogel, B. J., Verbyla, A. P. and Thompson, R. (1998). Spatial analysis of multi-environment early generation trials, Biometrics 54: 1-18.

Cullis, B. R., Smith, A. B. and Thompson, R. (2004). Perspectives of anova, reml and a general linear mixed model., in N. M. Adams, M. J. Crowder, D. J. Hand and D. A. Stephens (eds), Methods and Models in Statistics in honour of Professor John Nelder FRS., pp. 53-94.

Dempster, A. P., Selwyn, M. R., Patel, C. M. and Roth, A. J. (1984). Statistical and computational aspects of mixed model analysis, Applied Statistics 33: 203-214.

Diggle, P. J., Ribeiro, P. J. J. and Christensen, O. F. (2003). An introduction to model-based geostatistics, in J. Moller (ed.), Spatial Statistics and Computational Methods, Springer-Verlag, pp. 43-86.

Draper, N. R. and Smith, H. (1998). Applied Regression Analysis, John Wiley and Sons, New York, 3rd Edition.

Dutkowski, G. and Gilmour, A. R. (2001). Modification of the additive relationship matrix for open pollinated trials., Developing the Eucalypt of the Future. 10-15 September, Valdivia, Chile. p. 71.

Engel, B. (1998). A simple illustration of the failure of PQL, IRREML and APHL as approximate ml methods for mixed models for binary data, Biometrical Journal 2: 141-154.

Engel, B. and Buist, W. (1998). Bias reduction of approximate maximum likelihood estimates for heritability in threshold models, Biometrics 54: 11551164.

Engel, B. and Keen, A. (1994). A simple approach for the analysis of generalized linear mixed models, Statistica Neerlandica 48(1): 1-22.

Fischer, T. M., Gilmour, A. R. and van der Werf, J. (2004). Computing approximate standard errors for genetic parameters derived from random regression models fitted by average information reml, Genetics Selection Evolution 36(3): 363-369.

Gilmour, A. R., Anderson, R. D. and Rae, A. L. (1985). The analysis of binomial data by a generalised linear mixed model, Biometrika 72: 593-599.

Gilmour, A. R., Cullis, B. R. and Verbyla, A. P. (1997). Accounting for natural and extraneous variation in the analysis of field experiments, Journal of Agricultural, Biological and Environmental Statistics 2: 269-293.

Gilmour, A. R., Cullis, B. R., Welham, S. J., Gogel, B. J. and Thompson, R. (2004). An efficient computing strategy for prediction in mixed linear models, Computational Statistics and Data Analysis 44: 571-586.

Gilmour, A. R., Thompson, R. and Cullis, B. R. (1995). AI, an efficient algorithm for REML estimation in linear mixed models, Biometrics 51: 1440-1450.

Gleeson, A. C. and Cullis, B. R. (1987). Residual maximum likelihood (REML) estimation of a neighbour model for field experiments, Biometrics 43: 277288.

Gogel, B. J. (1997). Spatial analysis of multi-environment variety trials, PhD thesis, Department of Statistics, University of Adelaide, South Australia.

Goldstein, H. and Rasbash, J. (1996). Improved approximations for multilevel models with binary response, Journal of the Royal Statistical Society A General 159: 505-513.

Goldstein, H., Rasbash, J., Plewis, I., Draper, D., Browne, W., Yang, M., Woodhouse, G. and Healy, M. (1998). A user's guide to MLwiN, Institute of Education, London.

Green, P. J. and Silverman, B. W. (1994). Nonparametric regression and generalized linear models, London: Chapman and Hall.

Harvey, W. R. (1977). Users' guide to LSML76, The Ohio State University, Columbus.

Harville, D. A. (1997). Matrix algebra from a statisticians perspective, SpringerVerlag, New York.

Harville, D. and Mee, R. (1984). A mixed model procedure for analysing ordered categorical data, Biometrics 40: 393-408.

Haskard, K. A. (2006). Anisotropic Matérn correlation and other issues in modelbased geostatistics, PhD thesis, BiometricsSA, University of Adelaide.

Kammann, E. E. and Wand, M. P. (2003). Geoadditive models, Applied Statistics 52(1): 1-18.

Keen, A. (1994). Procedure IRREML, GLW-DLO Procedure Library Manual, Agricultural Mathematics Group, Wageningen, The Netherlands, pp. Report LWA-94-16.

Kenward, M. G. and Roger, J. H. (1997). The precision of fixed effects estimates from restricted maximum likelihood, Biometrics 53: 983-997.

Lane, P. W. and Nelder, J. A. (1982). Analysis of covariance and standardisation as instances of predicton, Biometrics 38: 613-621.

McCullagh, P. and Nelder, J. A. (1994). Generalized Linear Models, 2 edn, Chapman and Hall, London.

McCulloch, C. and Searle, S. R. (2001). Generalized, Linear, and Mixed Models, Wiley.

Millar, R. and Willis, T. (1999). Estimating the relative density of snapper in and around a marine reserve using a log-linear mixed-effects model, Australian and New Zealand Journal of Statistics 41: 383-394.

Nelder, J. A. and Wedderburn, R. W. M. (1972). Generalised linear models, Journal of the Royal Statistical Society, Series A 135: 370-384.

Patterson, H. D. and Nabugoomu, F. (1992). REML and the analysis of series of crop variety trials, Proceedings from the 25th International Biometric Conference, pp. 77-93.

Patterson, H. D. and Thompson, R. (1971). Recovery of interblock information when block sizes are unequal, Biometrika 58: 545-54.

Piepho, H.-P., Denis, J.-B. and van Eeuwijk, F. A. (1998). Mixed biadditive models, Proceedings of the 28th International Biometrics Conference.

Pinheiro, J. C. and Bates, D. M. (2000). Mixed-Effects Models in \(S\) and S-PLUS, Berlin: Springer-Verlag.

R Development Core Team (2005). R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0

Robinson, G. K. (1991). That BLUP is a good thing: The estimation of random effects, Statistical Science 6: 15-51.

Rodriguez, G. and Goldman, N. (2001). Improved estimation procedures for multilevel models with binary response: A case study, Journal of the Royal Statistical Society A - General 164(2): 339-355.

Schall, R. (1991). Estimation in generalized linear models with random effects, Biometrika 78(4): 719-27.

Searle, S. R. (1971). Linear Models, New York: John Wiley and Sons, Inc.
Searle, S. R. (1982). Matrix algebra useful for statistics, New York: John Wiley and Sons, Inc.

Searle, S. R., Casella, G. and McCulloch, C. E. (1992). Variance Components, New York: John Wiley and Sons, Inc.

Self, S. C. and Liang, K. Y. (1987). Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under non-standard conditions, Journal of the American Statistical Society 82: 605-610.

Smith, A. B., Cullis, B. R., Gilmour, A. R. and Thompson, R. (1998). Multiplicative models for interaction in spatial mixed model analyses of multienvironment trial data, Proceedings of the 28th International Biometrics Conference.

Smith, A., Cullis, B. R. and Thompson, R. (2001). Analysing variety by environment data using multiplicative mixed models and adjustments for spatial field trend, Biometrics 57: 1138-1147.

Smith, A., Cullis, B. R. and Thompson, R. (2005). The analysis of crop cultivar breeding and evaluation trials: an overview of current mixed model approaches [review], Journal of Agricultural Science 143: 449-462.

Stein, M. L. (1999). Interpolation of Spatial Data: Some Theory for Kriging, Springer-Verlag, New York.

Stevens, M. M., Fox, K. M., Warren, G. N., Cullis, B. R., Coombes, N. E. and Lewin, L. G. (1999). An image analysis technique for assessing resistance in rice cultivars to root-feeding chironomid midge larvae (diptera: Chironomidae), Field Crops Research 66: 25-26.

Stroup, W. W., Baenziger, P. S. and Mulitze, D. K. (1994). Removing spatial variation from wheat yield trials: a comparison of methods, Crop Science 86: 62-66.

Thompson, R., Cullis, B. R., Smith, A. and Gilmour, A. R. (2003). A sparse implementation of the average information algorithm for factor analytic and reduced rank variance models., Australian and New Zealand Journal of Statistics 45: 445-459.

Verbyla, A. P., Cullis, B. R., Kenward, M. G. and Welham, S. J. (1999). The analysis of designed experiments and longitudinal data by using smoothing splines (with discussion), Applied Statistics 48: 269-311.

Waddington, D., Welham, S. J., Gilmour, A. R. and Thompson, R. (1994). Comparisons of some glmm estimators for a simple binomial model., Genstat Newsletter 30: 13-24.

Webster, R. and Oliver, M. A. (2001). Geostatistics for Environmental Scientists, John Wiley and Sons, Chichester.

Welham, S. J. (1993). Genstat 5 Procedure Library manual, R. W. Payne, G. M. Arnold and G. W. Morgan, eds, release 2[3] edn, Numerical Algorithms Group, Oxford.

Welham, S. J. (2005). Glmm fits a generalized linear mixed model., in R. Payne and P. Lane (eds), GenStat Reference Manual 3: Procedure Library PL17,, VSN International, Hemel Hempstead, UK, pp. 260-265.

Welham, S. J. and Thompson, R. (1997). Likelihood ratio tests for fixed model terms using residual maximum likelihood, Journal of the Royal Statistical Society, Series B 59: 701-714.

Welham, S. J., Cullis, B. R., Gogel, B. J., Gilmour, A. R. and Thompson, R. (2004). Prediction in linear mixed models, Australian and New Zealand Journal of Statistics 46: 325-347.

White, I. M. S., Thompson, R. and Brotherstone, S. (1999). Genetic and environmental smoothing of lactation curves with cubic splines, Journal of Dairy Science 82: 632-638.

Wilkinson, G. N. and Rogers, C. E. (1973). Symbolic description of factorial models for analysis of variance, Applied Statistics 22: 392-399.

Wolfinger, R. and O'Connell, M. (1993). Generalized linear mixed models: A pseudo-likelihood approach, Journal of Statistical Computation and Simulation 48: 233-243.

Wolfinger, R. D. (1996). Heterogeneous variance-covariance structures for repeated measures, Journal of Agricultural, Biological, and Environmental Statistics 1: 362-389.

Yates, F. (1935). Complex experiments, Journal of the Royal Statistical Society, Series B 2: 181-247.

\section*{Index}

ABORTASR.NOW, 65
FINALASR.NOW, 65
Access, 44
accuracy - genetic BLUP, 194
advanced processing arguments, 185
Al algorithm, 13
AIC, 18
Akaike Information Criteria, 18
aliassing, 102
Analysis of Deviance, 98
animal breeding data, 2
arguments, 5
ASReml symbols
\(\sim, 83\)
*, 43
., 43
\#, 43
\$, 43
! \{, 85
!\}, 85
*, 85
\(+, 85\)
, , 85
-, 85
/, 85
: , 85
autoregressive, 111
Average Information, 2
balanced repeated measures, 253
Bayesian Information Criteria, 18
BIC, 18
binary files, 44
Binomial divisor, 99
BLUE, 14

BLUP, 14, 15
case, 84
combining variance models, 16
command file, 30
genetic analysis, 149
multivariate, 142
Command line option
A ASK, 181
B BRIEF, 181
C CONTINUE, 183
D DEBUG, 181
F FINAL, 183
\(\mathrm{G} g\) graphics, 181
\(\mathrm{H} g\) HARDCOPY, 182
I INTERACT, 181
J JOIN, 181
N NoGraphs, 181
O ONERUN, 183
Q QUIET, 182
R RENAME, 183
S WorkSpace, 184
W WorkSpace, 184
command line options, 179
commonly used functions, 85
conditional distribution, 12
conditional factors, 90
Conditional Wald F Statistics, 20
constraining variance parameters, 137
constraints
on variance parameters, 115
contrasts, 64
Convergence criterion, 65
correlated random effects, 15
correlation, 173
between traits, 142
model, 10
covariance model, 11
isotropic, 10
covariates, 42, 58, 101
cubic splines, 95
data field syntax, 48
data file, 28, 41, 42
binary format, 44
fixed format, 44
free format, 42
using Excel, 44
data file line, 32
datafile line, 59
qualifiers, 60
syntax, 59
datasets
barley.asd, 262
coop.fmt, 293
grass.asd, 253
harvey.dat, 149
nin89.asd, 28
oats.asd, 243
orange.asd, 285
rat.dat, 142
rats.asd, 247
ricem.asd, 279
voltage.asd, 250
wether.dat, 145
wheat.asd, 267
debug options, 181
Denominator Degrees of Freedom, 20
dense, 101
design factors, 101
diagnostics, 18
diallal analysis, 91
direct product, 7, 9, 106
direct sum, 9
discussion list, 4
Dispersion parameter, 98
distribution
conditional, 12
marginal, 12
Ecode, 39
Eigen analysis, 209
Eigen analysis example, 299
EM update, 134
environment variable
job control, 63
equations
mixed model, 14
error variance
heterogeneity, 9
errors, 213
Excel, 44
execution time, 209
expected information matrix, 13
F statistics, 20
Factor qualifier
DATE, 48
DMY, 49
LL Label Length, 49
MDY, 49
PRUNE, 50
SKIP fields, 50
SORT, 50
SORTALL, 50
TIME, 49
factors, 42
file
GIV, 154
pedigree, 150
Fisher-scoring algorithm, 13
fixed effects, 7
Fixed format files, 60
fixed terms, 83, 88
multivariate, 143
primary, 88
sparse, 89
Forming a job template, 34
free format, 42
functions of variance components, 38, 170
correlation, 173
heritability, 172
linear combinations, 171
syntax, 171
G structure, 106
definition lines, 115, 120
header, 120
more than one term, 135
Gamma distribution, 98
Generalized Linear Models, 96
genetic
data, 2
groups, 152
links, 149
models, 149
qualifiers, 149
relationships, 150
GIV, 154
GLMM, 99
graphics options, 181
half-sib analysis, 293
help via email, 4
heritability, 172, 209
heterogeneity
error variance, 9
identifiable, 16
IID, 7
inbreeding coefficients, 152, 194
Incremental Wald F Statistics, 20
information matrix
expected, 13
observed, 13
initial values, 119
input file extension
.BIN, 44
.DBL, 44
.bin, 42, 44
.csv, 43
.dbl, 42, 44
. pin, 171
interactions, 90
Introduction , 19
isotropic
covariance model, 10
job control
options, 183
qualifiers, 63
key output files, 190
likelihood
\(\log\) residual, 12
residual, 12
longitudinal data, 2
balanced example, 284
marginal distribution, 12
Matérn variance structure, 129
measurement error, 112
MET, 9
meta analysis, 2, 9
missing values, \(43,94,101,195\)
NA, 43
in explanatory variables, 101
in response, 101
mixed
effects, 7
model, 7
mixed model, 7
equations, 14
multivariate, 143
specifying, 32
model
animal, 149, 302
correlation, 10
covariance, 11
formulae, 83
random regression, 11
sire, 149
model building, 139
moving average, 93
multi-environment trial, 2, 9
multivariate analysis, 142, 278
example, 292
half-sib analysis, 293
Nebraska Intrastate Nursery, 27
Negative binomial distribution, 98
non singular matrices, 106
nonidentifiable, 16
objective function, 14
observed information matrix, 13
operators, 85
options
command line, 179
ordering of terms, 102
orthogonal polynomials, 94
outliers, 210
output
files, 35
multivariate analysis, 145
objects, 209
output file extension
.aov, 189, 196
.apj, 189
.asl, 189
.asp, 189
.asr, 35, 189, 190
.dbr, 189
.dpr, 189, 199
. pvc, 189
.pvs, 189, 199
.res, 189, 200
.rsv, 189, 205
.sln, 37, 189, 193
.spr, 189
.tab, 189, 207
.veo, 189
.vrb, 207
.vvp, 189, 208
. yht, 38, 189, 195
overspecified, 16
own models, 132
OWN variance structure, 131
! F2, 132
!T, 132
parameter
scale, 7
variance, 7
Path
DOPATH, 187
PATH, 187
PC environment, 177
pedigree, 149
file, 150
power, 129
Predict
! TP, 164
!TURNINGPOINTS, 164
\$TP, 95
PLOT suboptions, 165
PRWTS, 167
predicted values, 38
prediction, 33, 157
qualifiers, 162
predictions
estimable, 39
prior mean, 15
product
direct, 9
qualifier
!UpArrow, 53
\(!<, 53\)
\(!<=, 53\)
\(!<>, 53\)
\(!==, 53\)
\(!>, 53\)
\(!>=53\)
!*, 53
!+, 53
!-, 53
!/, 53
! =s, 133
!=, 53
! ABS, 53
! ADJUST, 73
!AILOADINGS, 79
!AISINGULARITIES, 72
! ALPHA, 152
! AOD Analysis of Deviance, 98
!ARCSIN , 53
! ARGS, 180
!ASK, 180
!ASMV, 67
!ASUV, 67
! A, 48
!BINOMIAL distribution, 98
!BLUP, 72
! BMP, 72
!BRIEF, 72, 180
!CINV, 79
!COLFAC, 67
!COMPLOGLOG, 98
!CONTINUE, 64, 139, 180
! CONTRAST, 64
! COS, 53
!CSV, 60
!CYCLE, 186
!DATAFILE, 73
!DDF, 68
!DEBUG, 180
!DEC, 164
! DENSE, 73
!DEVIANCE residuals, 99
!DF, 73
!DIAG, 152
!DISPLAY, 68
!DISP dispersion, 98
!DOM dominance, 57
!DOPART, 187
!DOPATH, 187
! D, 53
!EMFLAG , 74
!EPS, 68
!EXP, 54
! EXTRA, 75
!FACPOINTS, 80
!FCON, 65
!FILTER, 60
! FINAL, 180
! FORMAT, 60
!GAMMA distribution, 98
!GF, 133
!GIV, 152
!GKRIGE, 69
! GP, 133
! GRAPHICS, 180
! GROUPS, 153
! GU, 133
! GZ, 133
!G, 49, 66, 68
!HARDCOPY, 180
!HPGL, 69
! IDEntity link, 98
! INBRED, 153
! INCLUDE, 63
! INTERACTIVE, 180
! I, 48
! JOIN, 66, 69, 180
! Jddm, 54
! Jmmd, 54
! Jyyd, 54
! KNOTS, 80
!LAST, 75
!LOGARITHM, 98
!LOGFILE, 180
!LOGIT, 98
!LOGIT link, 98
!LOG link, 97
! L, 48
!MAKE, 153
!MATCH, 61
!MAXIT, 65
!MAX, 54
!MBF, 69
!MERGE, 61
!MGS, 153
!MIN, 54
!MM transformation, 54, 57
!MOD, 54
!MVREMOVE, 69
! M, 54
! NA, 54
! NEGBIN distribution, 98
! NOCHECK, 80
! NOGRAPHS, 180
! NOREORDER, 80
! NORMAL, 54
! NORMAL distribution, 97
! NOSCRATCH, 80
! OFFSET variable, 99
! ONERUN, 180
! OWN, 75
!PEARSON residuals, 99
!PLOT, 164
!POISSON distribution, 98
!POLPOINTS, 80
!PPOINTS, 80
!PRINTALL, 164
!PRINT, 76
!PROBIT, 98
!PS, 69
!PVAL, 70
!PVR GLM fitted values, 99
!PVSFORM, 76
!PVW GLM fitted values, 99
! P, 48
! QUIET, 180
! READ, 62
! RECODE, 62
! RENAME, 180
! REPEAT, 153
! REPLACE, 54
! REPORT, 80
! RESCALE, 54
!RESIDUALS, 76
! RESPONSE residuals, 99
! ROWFAC, 67, 70
! RREC, 62
!RSKIP, 62
! \(\mathrm{S} 2==1,134\)
! \(\mathrm{S} 2==r, 134\)
!S2=, 134
!SAVE, 76
!SCALE, 81
!SCORE, 81
!SCREEN, 77
!SECTION, 70
!SED, 164
!SEED, 55
!SELECT, 60
!SELF, 153
!SEQ, 55
!SETN, 55
! SETU, 55
!SET, 55
!SIN, 53
!SKIP, 60, 153
!SLNFORM, 77
!SLOW, 81
!SMX, 77
!SORT, 153
!SPATIAL, 77
!SPLINE, 71
!SQRT link, 98
!STEP, 71
!SUBSET, 71
!SUB, 55
!SUM, 66
!TABFORM, 77
!TOLERANCE, 81
!TOTAL, 98, 99
!TWOSTAGEWEIGHTS, 164
!TWOWAY, 78
!TXTFORM, 77
!UNIFORM, 55
! VCC, 78
!VGSECTORS, 78
!VPV, 165
!VRB, 81
! V, 56
!WMF, 78
! WORKSPACE, 180
!WORK residuals, 99
! X, 66
! YHTFORM, 78
! YSS, 73, 78
! YVAR, 180
! Y, 66
!TDIFF, 164
qualifiers
datafile line, 60
genetic, 149
job control, 63
variance model, 133

R structure, 106
definition, 118
definition lines, 115
random
effects, 7
correlated, 15
regressions
model, 11
terms
multivariate, 143
random regressions, 136
random terms, 83, 89
RCB, 31
analysis, 107
design, 28
reading the data, 31,47
REML, i, 2, 11, 17
REMLRT, 17
repeated measures, 2, 253
reserved terms, 85
Trait, 85, 95
a \((t, r), 91\)
and \((t, r), 86,91\)
at(), 92
at \((f, n), 85,92\)
\(\cos (v, r), 86,92\)
fac (\(v, y\)), 85, 92
fac(v), 85, 92
\(\mathrm{g}(f, n), 92\)
\(\operatorname{giv}(f, n), 86,92\)
h(), 93
i(f), 93
ide (f), 86, 93
\(\operatorname{inv}(v, r), 86,93\)
\(1(f), 93\)
\(\operatorname{leg}(v, n), 86,93\)
\(\operatorname{lin}(f), 85,93\)
\(\log (v, r), 86,93\)
\(\operatorname{ma1}(f), 86,93\)
ma1, 86, 93
mu, 85, 93
mv, 85, 94
out(), 94
\(\mathrm{p}(v, n), 94\)
\(\operatorname{pol}(v, n), 87,94\)
pow \((x, p, o), 95\)
qtl(), 95
\(\mathrm{s}(v[, k]), 95\)
\(\sin (v, r), 87,95\)
\(\operatorname{spl}(v[, k]), 85,95\)
```

    sqrt(v,r), 87, 95
    uni(f,k),96
    uni(f,n),87
    uni(f),87
    units, 85, 95
    xfa(f,k), 87,96
    reserved words
AEXP, 123
AGAU, 124
AINV, 125
ANTE [1], 124
AR2, 121
AR3, 121
ARMA, }12
AR[1], 121
CHOL[1]C, 124
CHOL[1], 124
CIR, 123
CORB, }12
CORGB, }12
CORGH, }12
CORU, 122
DIAG, 124
EXP, 122
FACV [1], 125
FA[1], 125
GAU, 123
GIV, 125
IDH, }12
ID, 121
IEUC, 123
IEXP, 123
IGAU, 123
LVR, 123
MA2, 122
MAT, 124
MA[1], 122
OWN, 124
SAR2, 121
SAR, 121

```

SPH, 123
US, 124
XFA[1], 125
residual
error, 7
likelihood, 12
response, 83
running the job, 33
scale parameter, 7
score, 13
Score test, 66
section, 9
separability, 10
separable, 111
singularities, 102
sparse, 101
sparse fixed, 83
spatial
analysis, 261
data, 2
model, 110
specifying the data, 47
split plot design, 242
tabulation, 32
qualifiers, 157
syntax, 157
tests of hypotheses, 19
title line, 31, 47
trait, 42, 142
transformation, 50
syntax, 52
typographic conventions, 5
unbalanced
data, 250
nested design, 246
UNIX, 177
unreplicated trial, 267
variance
parameter, 7
variance components
functions of, 170
variance header line, 115, 117
variance model
combining, 16,134
description, 120
forming from correlation models, 126
qualifiers, 133
specification, 106
specifying, 107
variance parameters, 11
constraining, 115, 137
between structures, 138
equality, 137
variance structures, 33, 115
multivariate, 144
Wald F tests, 20
weight, 83, 96
weights, 42
workspace options, 183```

[^0]: ${ }^{1}$ These are available from VSN (http://www.vsni.co.uk).

