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Genome-wide association analysis reveals cryptic alleles as an
important factor in heterosis for fatness in chicken F2 population

B. Abasht and S. J. Lamont

Department of Animal Science, Iowa State University, Ames, IA 50011, USA

Summary Genome-wide association studies have become possible in the chicken because of the recent

availability of the complete genome sequence, a polymorphism map and high-density single

nucleotide polymorphism (SNP) genotyping platforms. We used these tools to study the

genetic basis of a very high level of heterosis that was previously observed for fatness in two

F2 populations established by crossing one outbred broiler (meat-type) sire with dams from

two unrelated, highly inbred, light-bodied lines (Fayoumi and Leghorn). In each F2 popu-

lation, selective genotyping was carried out using phenotypically extreme males for

abdominal fat percentage (AF) and about 3000 SNPs. Single-point association analysis of

about 500 informative SNPs per cross showed significant association (P < 0.01) of 15 and

24 markers with AF in the Broiler · Fayoumi and Broiler · Leghorn crosses respectively.

These SNPs were on 10 chromosomes (GGA1, 2, 3, 4, 7, 8, 10, 12, 15 and 27). Inter-

estingly, of the 39 SNPs that were significantly associated with AF, there were about twice

as many homozygous genotypes associated with higher AF that traced back to the inbred

lines alleles, although the broiler line had on average higher AF. These SNPs are considered

to be associated with QTL with cryptic alleles. This study reveals cryptic alleles as an

important factor in heterosis for fatness observed in two chicken F2 populations, and sug-

gests epistasis as the common underlying mechanism for heterosis and cryptic allele

expression. The results of this study also demonstrate the power of high marker-density SNP

association studies in discovering QTL that were not detected by previous microsatellite-

based genotyping studies.

Keywords chicken, cryptic allele, fatness, heterosis, high-density single nucleotide

polymorphism, quantitative trait locus.

Introduction

Selection and hybridization are two principal procedures

that are used in animal and plant breeding programmes

(Rieseberg et al. 1999). Although widely exploited in animal

and plant production, little consensus has been reached on

the genetic basis of the heterosis caused by hybridization

(Birchler et al. 2003). Dominance and overdominance

models are two historical explanations for heterosis (Bruce

1910; Crow 1948; Semel et al. 2006). However, several

observations do not seem to be easily explained by these

models (Birchler et al. 2006). For example, in a F2–F3

population obtained from a cross between two different rice

lines, Yu et al. (1997) observed a lack of correlation

between heterozygosity and trait expression, and concluded

that the effect of dominance and/or overdominance made

only limited contribution to the heterosis in their experi-

mental population.

Producing new and improved hybrids or crossbreds in

breeding programmes is largely based on extensive testing

by trial and error (Dekkers & Hospital 2002). Studying the

genetic basis underlying heterosis can aid the understand-

ing of the genetic requirements for its expression and facil-

itate exploiting this potential in breeding programmes.

Recent availability of the complete genome sequence (Hillier

et al. 2004), a 2.8-million point polymorphism map (Wong

et al. 2004) and high-density single nucleotide polymor-

phism (SNP) genotyping platforms provide powerful tools

for the study of quantitative traits in the chicken (Lamont

2006). Further investigating the observations of very high
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heterosis levels for fatness in two F2 chicken populations

(Deeb & Lamont 2002) and identification of fatness-associ-

ated microsatellite markers (Zhou et al. 2006), the current

experiment sheds light on its genetic basis by using a very

high-density SNP array. Cryptic QTL alleles show trait

effects that are in the opposite direction of what would be

expected based on the mean phenotypic difference between

the crossed populations (Abasht et al. 2006a). The current

data can be used to study cryptic alleles, which this study

reveals as an important factor in heterosis for fatness

observed in two chicken F2 populations.

Materials and methods

Mapping population and phenotypic measurements

The Iowa Growth and Composition Resource Population

(IGCRP) was established by crossing broiler sires with dams

from two unrelated highly inbred lines (Fayoumi and

Leghorn, Zhou & Lamont 1999; Deeb & Lamont 2002). For

the current study, from one broiler sire, one F1 male from

each cross was randomly selected and each mated with 20

half-sib F1 females from the same cross. In total, about 720

male and female F2 offspring were produced in three hat-

ches. They were raised in floor pens on wood shavings and

had access to feed and water ad libitum. Blood samples were

collected for genomic DNA isolation. At 8 weeks of age,

body weight was measured, the birds were killed by cervical

dislocation and abdominal fat weight was recorded.

Genotyping

An Illumina Bead Array of 3072 SNPs (designed primarily

by Dr Hans Cheng, USDA-ARS, Avian Disease and Oncology

Lab, East Lansing, MI), of which 2733 yielded reliable

genotypes, was used. In each F2 population, selective

genotyping was carried out for 20 high and low extreme

males for abdominal fat weight as the percentage of body

weight at 8 weeks of age (AF). One representative individual

from each inbred line and the broiler grand sire were

genotyped.

Statistical analysis

The associations between SNP genotype and AF were

assessed for informative markers within each cross using

one-way ANOVA test of the JMP version 6 statistical program

package (SAS Institute Inc. 2005). The following model was

used for the analysis:

Y ¼ lþ SNPþ e;

where Y is AF, SNP represents the effect of the three SNP

genotypes and e is residual error. SNP were considered

significantly associated with AF if P < 0.01. The hatch

effect on AF was not significant in the whole population,

and therefore data were not adjusted for the hatch effect.

Multiple comparisons of significant AF genotype mean val-

ues were performed by the Tukey–Kramer Honestly Signi-

ficant Differences (HSD) test of JMP (SAS Institute Inc. 2005).

Differences were considered significant at P £ 0.05. A SNP

was regarded as associated with QTL with cryptic effect if

the AF mean of the homozygous inbred line genotype was

significantly higher than the AF mean of the broiler

homozygous genotype.

Markers with any genotype class represented by less than

three individuals were excluded from analysis.

Results

One representative individual from each highly inbred line

and the single broiler grandsire were genotyped to deter-

mine the SNP alleles of the founder lines. About 80.1% of

markers were homozygous in the broiler grandsire and

about 99.7% markers were homozygous in the inbred

Leghorn and Fayoumi lines (Table 1). Of 470 and 506

informative markers respectively in the Broiler · Fayoumi

(B · F) and Broiler · Leghorn (B · L) crosses, 107 were

shared between crosses. In total, 15 and 24 markers

showed significant association (P < 0.01) with AF in the

B · F and B · L crosses respectively (Table 2). Two markers

with significant association with fatness with incoherent

genotype information between F0 and F2 were excluded.

Markers with significant association with fatness were

located on 10 chromosomes: GGA1, 2, 3, 4, 7, 8, 10, 12, 15

and 27. The markers with significant association with AF

were usually clustered close to each other on chromosomal

regions within each cross. Significant markers were not the

same between the crosses.

For nine significant markers, the homozygous broiler

genotype was significantly associated with higher AF than

the homozygous inbred line genotype. For 22 significant

markers, the AF mean of the homozygous inbred line

genotype was significantly higher than that of the broiler

homozygous genotype, although the broiler line had on

average higher AF. These markers were considered to be

associated with QTL showing cryptic effect. For five signifi-

cant markers, the cryptic allele pattern could not be

assessed, because the alleles in the F2 could not be

unequivocally assigned to the F0 grandparents or there

was missing genotype information in the F0 generation.

Table 1 Number of homozygous and heterozygous markers in F0

broiler sire and inbred Leghorn and Fayoumi lines.

F0

Genotype

number Homozygous Heterozygous

Genome

homozygosity1

Broiler 2483 2008 475 80.87

Leghorn 2710 2704 6 99.78

Fayoumi 2687 2678 9 99.67

1100*homozygous/(homozygous + heterozygous).
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Table 2 Markers with significant association (P < 0.01) with abdominal fat % (AF) in Broiler · Fayoumi and Broiler · Leghorn crosses.

Cross chromosome Mb1 dbSNP number2 P-value3

Genotype (F0) Genotype effect (F2)4

Broiler

sire

Inbred

dam

Broiler

homozygote Heterozygote

Inbred

homozygote

Mean SE Mean SE Mean SE

Broiler · Fayoumi

1 54.2 rs13866601 0.0026 CC AA 1.11b 0.5 3.66a 0.43 3.47a 0.5

1 55.3 rs14825458 0.0026 CC GG 1.11b 0.5 3.66a 0.43 3.47a 0.5

3 49.5 rs14355103 0.0013 GG AA 4.03a 0.48 1.27b 0.44 3.38a 0.44

3 109 rs14410166 0.0056 CC TT 1.06b 0.64 2.88a,b 0.37 4.48a 0.64

3 110 rs16341351 0.0026 GG AA 1.08b 0.55 3.12a 0.35 4.62a 0.71

3 114 rs14415479 0.0012 GG TT 1.08b 0.52 2.99a 0.35 4.6a 0.58

4 31.6 rs16382347 0.0043 AG GG 3.86a 0.56 3.37a 0.42 1.18b 0.51

4 64.3 rs15599434 0.0006 CC AA 1.17b 0.42 3.79a 0.35 3.52a 0.65

4 65.1 rs14481413 0.0006 GG AA 1.17b 0.42 3.79a 0.35 3.52a 0.65

4 68.7 rs16429297 0.0048 CC TT 1.18b 0.52 3.45a 0.4 3.78a 0.63

4 69.5 rs13550420 0.0048 TT GG 1.18b 0.52 3.45a 0.4 3.78a 0.63

10 4.27 rs15562980 0.0037 TT AA 4.63a 0.72 3.09a 0.36 1.14b 0.56

10 4.33 rs14001627 0.0037 GG CC 4.63a 0.72 3.09a 0.36 1.14b 0.56

27 4.34 rs14304199 0.0021 AA 1.21b 0.6 3.85a 0.36 1.9b 0.54

27 4.61 rs16208200 0.0003 AA GG 1.21b 0.52 3.85a 0.32 1.3b 0.52

Broiler · Leghorn

1 174 rs14917340 0.0053 AA GG 1.6b 0.62 3.24a,b 0.42 5.12a 0.69

1 175 rs15502284 0.0037 TC TT 1.62b 0.68 2.92b 0.41 5.1a 0.6

2 94.9 rs13639524 0.0062 AA GG 1.51b 0.57 3.58a 0.49 4.41a 0.57

2 109 rs16092722 0.0044 AA CC 1.48b 0.61 2.98a,b 0.52 4.48a 0.48

2 111 rs16098023 0.0027 TT GG 1.52b 0.54 3.19a,b 0.54 4.48a 0.47

2 112 rs15141700 0.0027 TT AA 1.52b 0.54 3.19a,b 0.54 4.48a 0.47

2 113 rs14232975 0.0044 GG AA 1.48b 0.61 2.98a,b 0.52 4.48a 0.48

2 114 rs16102995 0.0092 CC TT 1.52b 0.58 3.54a,b 0.64 4.14a 0.47

3 4.91 rs16218049 0.0068 GG AA 1.98b 0.53 3.17a,b 0.49 5a 0.63

4 77.9 rs15618689 0.0052 CG GG 2.83a,b 0.62 1.45b 0.62 4.28a 0.44

7 2.84 rs15829574 0.0026 AA GG 4.6a 0.47 2.7b 0.47 1.44b 0.66

7 4.21 rs14601968 0.0012 TT CC 4.9a 0.51 3.24a,b 0.44 1.46b 0.55

7 6.25 rs16579636 <0.0001 GG AA 4.84a 0.31 2.11b 0.36 1.44b 0.47

7 9.85 rs14604927 <0.0001 TT CC 4.84a 0.31 2.11b 0.36 1.44b 0.47

7 10.1 rs14605138 <0.0001 CC TT 4.84a 0.31 2.11b 0.36 1.44b 0.47

7 10.4 rs16581205 0.001 TT CC 4.53a 0.38 2.17b 0.49 1.52b 0.7

7 13.1 rs14608276 0.0035 CC TT 4.46a 0.45 2.6b 0.51 1.44b 0.67

8 0.2* rs15994570 0.0078 AA CC 1.58b 0.81 2.56b 0.47 4.55a 0.5

8 0.03* rs15994484 0.0078 GG AA 1.58b 0.81 2.56b 0.47 4.55a 0.5

8 8.37 rs16625881 0.0078 TT CC 1.58b 0.81 2.56b 0.47 4.55a 0.5

8 11.7 rs15910192 0.0078 CC TT 1.58b 0.81 2.56b 0.47 4.55a 0.5

8 11.9 rs15910298 0.0078 CC TT 1.58b 0.81 2.56b 0.47 4.55a 0.5

12 1.67 rs14031354 0.0086 TC CC 5.03a 0.7 3.61a,b 0.5 1.95b 0.53

15 4.18 rs15768400 0.0057 AA TT 4.39a 0.52 1.87b 0.46 3.99a,b 0.8

1SNP location on Mb based on May 2006 chicken genome assembly [UCSC Chicken Genome Browser (2006): http://genome.ucsc.edu/cgi-bin/

hgGateway].

*SNP assigned as random location on chromosome.
2dbSNP number (http://www.ncbi.nlm.nih.gov/). Underlined markers are considered to be associated with QTL with cryptic effect (AF mean of

homozygous inbred line genotype significantly higher than AF mean of broiler homozygous genotype). For markers in italics, the cryptic pattern

cannot be assessed because a genotype class in F2, allele cannot be unequivocally assigned to the F0 grandparent or there was missing genotype in F0.
3P-value, one-way ANOVA.
4Mean, phenotypic mean; SE, standard error. Genotype classes not sharing a letter are significantly different by phenotypic mean values Tukey test.
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For three significant markers, there were no significant

differences between AF mean of the homozygous inbred line

genotype and broiler homozygous genotype.

Discussion

Very high levels of heterosis (107% average of the two

crosses) for AF with a very wide phenotypic distribution

exist in the F2 populations under study, but for no other

measures of body composition in these populations (Deeb &

Lamont 2002). High numbers of cryptic alleles for fatness,

detected in both crosses, may make significant contributions

to the heterosis in these populations. Cryptic QTL alleles

show trait effects that are in the opposite direction of what

would be expected based on the mean phenotypic difference

between the crossed populations. Because the AF mean of

the inbred lines is about half that of the broiler line, it was

expected that inbred line alleles would generally be associ-

ated with low fatness. Measured in 50 birds of each of the

three parental lines, raised as contemporaries with the F2

generation, the AF in the broiler, Leghorn and Fayoumi

lines was 2.00, 1.07 and 1.22 respectively (Deeb & Lamont

2002). However, there were about twice as many markers

with homozygous inbred line genotypes associated with

higher AF than broiler homozygous genotypes, which were

considered to be associated with QTL with cryptic alleles.

Cryptic alleles may represent single locus effect and exist

in a population because of no or limited selection for the

trait, drift, pleiotropic effects of the QTL allele on other traits

that are under selection or close linkage with QTL that are

under selection (Abasht et al. 2006a). The effects of such

cryptic alleles are expected to be modest, otherwise the low-

phenotype strain would show a higher phenotype (Frankel

1995). However, the higher phenotypic mean (heterosis) in

the F2 population in the current study was mostly associ-

ated with a large cryptic effect of the inbred line homozy-

gous genotype, which does not seems to be explained by a

single locus effect of these alleles. One possible explanation

for the appearance of cryptic alleles in the current study is

the change in the allele effect in the F2 population as a result

of interaction between loci (epistasis). Alternatively, cryptic

alleles that increase the phenotypic mean in the F2 popu-

lation may have the opposite or no effect on the trait mean

in parental populations. This explanation for cryptic alleles

is close to the evolutionary genetics definition of cryptic

genetic variation, which is defined as existing genetic vari-

ation that does not contribute to the normal range of phe-

notypes observed in a population, but can modify a

phenotype if the genetic background and environment

change (Gibson & Dworkin 2004; Hermisson & Wagner

2004). The release of this variation (decanalization) is typi-

cally associated with an increase in the number of allelic

effects and hence trait variance (Gibson & Dworkin 2004).

Usually it is thought that evolution of a buffering mecha-

nism is necessary to obtain an increase of expressed genetic

variation after an environmental and genetic change.

However, our results seem to contradict this idea, because

in the current study the cryptic genetic variation is associ-

ated with the inbred line alleles, and it has been hypothe-

sized that inbreeding decreases genetic robustness by

increasing homozygosity and decreasing buffering capacity

(Lerner 1954; Stearns et al. 1995; Reale & Roff 2003). The

current findings support the variable interaction model of

Hermisson & Wagner (2004). Based on their hypothesis, the

release of hidden genetic variation is a generic property of

models with epistasis or genotype–environmental interac-

tion and does not require that the population has evolved

genetic robustness (i.e. canalization) prior to the change in

genetic background or environment. In the present study,

expression of cryptic variation could result mostly from

epistasis, as there were no environmental differences. The

size of the tested population did not permit analyses for

Figure 1 Chromosomal location of SNP associated with fatness in current study and previously published QTL and candidate genes associated

with fatness. Physical location [Mb based on 2006 chicken genome sequence assembly; UCSC Chicken Genome Browser (2006): http://

genome.ucsc.edu/cgi-bin/hgGateway] of previously published candidate gene associated with fatness (P < 0.05) and the SNP with significant

(P < 0.01) association with fatness detected in the current study are presented on the vertical line to the left. Candidate genes include A-FABP, apoB,

IGF1, IGF2, L-FABP, Myostatin, PGC-1a, TGFB3 and THRSPa. Circles represent the location of SNP associated with fatness in the current study: filled

circle, non-cryptic allele; unfilled circle, cryptic allele; crossed circle, unknown cryptic status. The thick lines close to GGA5 are the fine-mapped QTL

region for male (m)- and female (f)-specific fatness QTL (Abasht et al. 2006b,c). Consensus map locations (cM) of previously published QTL for

fatness (Abasht et al. 2006a; Atzmon et al. 2006) are on the left side of the open bar on the right. For each QTL are listed, from left to right: trait

name, age (week) at phenotypic measurement, QTL interaction (if there is any) and type of cross. Trait names include AFW (abdominal fat weight)

and AF (abdominal fat weight adjusted to body weight or carcass weight or as percentage of carcass weight). Only the AF was included when both

AFW and AF were reported in a study. QTL interactions include QTL · sex interaction (sex-m, sex-f and sex-m & f for significant/suggestive QTL

effect in male, female and both sexes respectively) and QTL interaction with sex and hatch (sex-h). Genome- and experiment-wise significant

(P < 0.05) QTL are presented in bold. Suggestive QTL, defined as genome-wise (P < 0.2), chromosome-wise (P < 0.05) and single-point (P < 0.05)

QTL, are presented in roman, italic and underlined letters respectively. The line abbreviations are: B, broiler; BS, broiler breeder sire line; BD, broiler

breeder dam line; BL, Baier layer; DB, dwarf broiler; F, Fayoumi; L, Leghorn; S, Satsumadori; Si, Silkie; WR, White Plymouth Rock; LL, lean line; FL, fat

line. Framework markers are presented to both sides, for reference. MAPCHART 2.0 (Voorrips 2002) was used to produce most parts of this figure. Cited

studies are as follows: 1: Abasht et al. (2006b); 2: Abasht et al. (2006c); 3: Atzmon et al. (2006); 4: Gu et al. (2004); 5: Ikeobi et al. (2002);

6: Jennen et al. (2004); 7: Jennen et al. (2005); 8: Lagarrigue et al. (2006); 9: Li et al. (2003); 10: McElroy et al. (2006); 11: Nones et al. (2006);

12: Park et al. (2006); 13: Tatsuda & Fujinaka (2001); 14: Wang et al. (2004); 15: Wang et al. (2005); 16: Wang et al. (2006b); 17: Wang et al.

(2006a); 18: Wu et al. (2006); 19: Zhang et al. (2006); 20: Zhou et al. (2005); 21: Zhou et al. (2006).
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Figure 1 continued.
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epistatic interaction between loci, and if epistasis was

caused by higher-order interaction (multilocus structure) it

would be difficult to detect even in large populations.

However, the very high level of heterosis observed in this F2

population strongly suggests evidence for epistasis. If there

is epistatic interaction, the population mean will not reach

its equilibrium value in the F2 (Falconer & Mackay 1996).

About 35 QTL regions for absolute fat weight or AF,

including two fine-mapped regions and nine candidate

genes, have been reported in the literature on 17 chromo-

somes across a variety of crosses, populations, ages at

phenotype measurement and sexes. There is good agree-

ment between chromosomal locations of SNP with signi-

ficant association with fatness identified in the current

study and QTL or candidate genes associated with fatness

identified in previous studies (Fig. 1).

In the present study, we analysed male offspring with

extreme phenotype for fatness in each F2 population and

identified 39 markers with significant association with

fatness out of 976 tested in both crosses. Ten of these 39

significant markers were expected to be false positives at

P < 0.01. Selective genotyping is most appropriate where

only one trait is being analysed (Darvasi 1997), as in the

current study. Selective genotyping of the extreme progeny

increases the power and efficiency to detect QTL (Lander &

Botstein 1989). Estimates of QTL effect will likely be

upwardly biased by using this approach; however, it is

unlikely that this approach would consistently bias the

direction of QTL effect (i.e. towards cryptic alleles).

Compared to a previous microsatellite-marker QTL scan

that identified 11 QTL for AF using the whole F2 population

and both sexes (Zhou et al. 2006), the current study con-

firmed five (45%) of the QTL detected in the previous study

and identified eight additional QTL regions for fatness on

GGA1, 2, 3, 4, 12, 15 and 27 (Fig. 1). From 22 SNPs

associated with QTL showing cryptic effect, one SNP on

chromosome 1 at 174 Mb and five SNP on chromosome 8

at 0–12 Mb were located in the regions where Zhou et al.

(2006) also identified QTL for AF with cryptic effect. The

remaining 16 SNPs with significant association with QTL

with cryptic effect were located in the regions on GGA1, 2,

3 and 4 where QTL were not found in the Zhou et al.

(2006) study. About half of QTL detected in the Zhou

et al. (2006) study were not found in the current study,

possibly because of differences in the number of animals

genotyped, or because only males or phenotypically extreme

individuals were typed in the current study. Furthermore,

differences in power and existence of false positives in each

study may also contribute to some lack of agreement in

QTL results.

In conclusion, this study reveals cryptic alleles as an

important factor in heterosis for fatness observed in two

chicken F2 populations, and suggests epistasis as the com-

mon underlying mechanism for heterosis and cryptic allele

expression. The results of this study also demonstrate the

power of high marker-density SNP association studies in

discovering QTL that were not detected by less dense prior

microsatellite-based genotyping.
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